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Content 

 What is software testing 

 Why do we need software testing 

 How do we do software testing 



Software Quality Assurance 

 Software testing is one of the methods to 

assure software quality. 

 Software quality assurance involves 

validation and verification of software. 
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Validation: specification requirements 
consistent 

Verification: implementation specification 
consistent 

Are we build the right software? 

Are we build the software right? 
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Software Verification 

 Software can be verified statically or 

dynamically. 

 Static verification techniques contain review, 

inspection, walkthrough, and analysis. 

 Dynamic verification techniques contain 

various testing techniques. 
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Error, Fault, Failure, and Incident 

 People make errors. 

 A fault in the documents or programs is the 

result of an error. 

 A failure occurs when a fault executes. 

 When a failure occurs, it may or may not be 

readily apparent to the user. An incident 

alerts the user to the occurrence of a failure. 
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What Is Software Testing 

 Software testing is the act of executing 

software with a suite of test cases so that it 

can either find faults in the program or 

demonstrate the program is correct. 

 Each test case is associated with a specific 

program behavior. A test case contains a list 

of test inputs and a list of corresponding 

expected outputs. 

 It is difficult to design a suite of test cases 

that can prove a program is correct. 
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The Testing Life Cycle 
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Why Do We Need Software Testing 

 Software prevails in our living environment. 

Quality of software significantly influences our 

quality of life. 

 Software faults in critical software systems 

may cause dramatic damages on our lives 

and finance. 
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Example: THERAC-25 Radiation Therapy 

 In 1986 two cancer patients at the East 

Texas cancer Center received fatal radiation 

overdoses from the computer-controlled 

radiation therapy machine. 

 A software bug on mishandled race condition. 
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Example: Shooting down Airbus 320 

 In 1988 USA troops mistook an Airbus 320 as 

an F-14 and shot down the Airbus 320. 

 290 people dead. 

 A software bug in the tracking software. 
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Example: London Ambulance Service 

 London Ambulance Service Computer Aided 

Dispatch automates many of the human-

intensive processes of manual dispatch 

systems associated with ambulance services 

in the UK. 

 Failure of the London Ambulance Service on 

26 and 27 November 1992. 

 At 23:00 on October 28 the LAS eventually 

instigated a backup procedure, after the 

death of at least 20 patients. 



12 

Example: Mars Climate Orbiter 

 In 1999, the Mars Climate Orbiter is 

supposed to relay signals from the Mars 

Polar Lander once it reached the surface of 

the planet. 

 The Mars Climate Orbiter smashed into the 

planet instead of reaching a safe orbit. 

 A software bug that fails to convert English 

measures to metric values. 

 This incident costs $165 million. 
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Economic Impact 

 In 2002 a study commissioned by the 

National Institute of Standards and 

Technology found that software errors cost 

the U.S. economy about $59.5 billion 

annually, or about 0.6 percent of the gross 

domestic product. 
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Current Status 

 Carefully made programs have 5 faults per 

1000 lines of code (LOC). 

 Windows XP has 45M LOC, so it may have 

225000 faults. 
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Comparison with Automobile Industry 

 If the automobile industry had developed like 

the software industry, we would all be driving 

$25 cars. 

 If car were like software, they would crash 

twice a day for no reason, and when you 

called for service, they would tell you to 

reinstall the engine. 
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Specified and Implemented Program 

Behaviors 
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Specified, Implemented, and Tested 

Program Behaviors 
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Test Cases 

 Test case generation 

 Test case execution 
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Test Case Execution 
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Test Case Generation 

 There are two approaches to determining test 

cases: functional testing (or black box testing) 

and structural testing (or white box testing). 

 Functional testing: the software is viewed as a 

black box and test cases are determined from 

the functions described in the specification. 

 Structural testing: the software is viewed as a 

white box and test cases are determined from 

the structure designed in the implementation. 
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Functional Testing 
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Structural Testing 
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Functional Testing v.s. Structural Testing  

 It is hard for functional testing to identify 

behaviors that are not specified (faults of 

comission). 

 It is hard for structural testing to identify 

behaviors that are not implemented (faults of 

omission). 

 Neither approach is sufficient, both 

approaches are needed. 
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Tracking of Incidents 

 An incident tracking system keeps track of 

the incidents that should be fixed so that all 

incidents are properly resolved. 
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Tracking of Incidents 

 Anyone who needs to know about an incident 

should learn of it soon after it’s reported. 

 No incident will go unfixed merely because 

someone forgot about it. 

 No incident will go unfixed on the whim of a 

single programmer. 

 A minimum of incidents will go unfixed merely 

because of poor communication. 



26 

Regression Testing 

 Regression testing reuses the test cases to 

test the fixed (or a new version of ) software 

to make sure that the fixing does not 

introduce new faults into the software. 
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Levels of Testing (V-Model) 
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Costs of Software Quality (Control Costs) 

 Prevention costs include investments in 

quality infrastructure and quality activities that 

are not directed to a specific project or 

system, being general to the organization. 

 Appraisal costs include the costs of activities 

performed for a specific project or system for 

the purpose of detecting software errors. 
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Costs of Software Quality (Failure of 

Control Costs) 

 Internal failure costs include costs of 

correcting errors that have been detected by 

design reviews, software tests and 

acceptance tests and completed before the 

software is installed at customer sites. 

 External failure costs include all costs of 

correcting failures detected by customers or 

the maintenance team after the software 

system has been installed. 
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Software Quality Levels v.s. Costs 
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Test Case Coverage 

 Software quality costs affects software quality 

levels. 

 We can determine when to stop the software 

testing based on available software quality 

resources. 

 The coverage of test cases is used to 

determine the termination of software testing. 


