
Introduction to Software

Testing

2

Content

 What is software testing

 Why do we need software testing

 How do we do software testing

Software Quality Assurance

 Software testing is one of the methods to

assure software quality.

 Software quality assurance involves

validation and verification of software.

3

Validation: specification requirements
consistent

Verification: implementation specification
consistent

Are we build the right software?

Are we build the software right?

4

Software Verification

 Software can be verified statically or

dynamically.

 Static verification techniques contain review,

inspection, walkthrough, and analysis.

 Dynamic verification techniques contain

various testing techniques.

5

Error, Fault, Failure, and Incident

 People make errors.

 A fault in the documents or programs is the

result of an error.

 A failure occurs when a fault executes.

 When a failure occurs, it may or may not be

readily apparent to the user. An incident

alerts the user to the occurrence of a failure.

6

What Is Software Testing

 Software testing is the act of executing

software with a suite of test cases so that it

can either find faults in the program or

demonstrate the program is correct.

 Each test case is associated with a specific

program behavior. A test case contains a list

of test inputs and a list of corresponding

expected outputs.

 It is difficult to design a suite of test cases

that can prove a program is correct.

7

The Testing Life Cycle

Fault

Classification

Fault

Isolation

Fault

Resolution

error

error

error

fault

fault

fault

incident

Static verification

can be used to

detect faults in

specification and

design early.

Specification

Design

Coding

Testing

8

Why Do We Need Software Testing

 Software prevails in our living environment.

Quality of software significantly influences our

quality of life.

 Software faults in critical software systems

may cause dramatic damages on our lives

and finance.

9

Example: THERAC-25 Radiation Therapy

 In 1986 two cancer patients at the East

Texas cancer Center received fatal radiation

overdoses from the computer-controlled

radiation therapy machine.

 A software bug on mishandled race condition.

10

Example: Shooting down Airbus 320

 In 1988 USA troops mistook an Airbus 320 as

an F-14 and shot down the Airbus 320.

 290 people dead.

 A software bug in the tracking software.

11

Example: London Ambulance Service

 London Ambulance Service Computer Aided

Dispatch automates many of the human-

intensive processes of manual dispatch

systems associated with ambulance services

in the UK.

 Failure of the London Ambulance Service on

26 and 27 November 1992.

 At 23:00 on October 28 the LAS eventually

instigated a backup procedure, after the

death of at least 20 patients.

12

Example: Mars Climate Orbiter

 In 1999, the Mars Climate Orbiter is

supposed to relay signals from the Mars

Polar Lander once it reached the surface of

the planet.

 The Mars Climate Orbiter smashed into the

planet instead of reaching a safe orbit.

 A software bug that fails to convert English

measures to metric values.

 This incident costs $165 million.

13

Economic Impact

 In 2002 a study commissioned by the

National Institute of Standards and

Technology found that software errors cost

the U.S. economy about $59.5 billion

annually, or about 0.6 percent of the gross

domestic product.

14

Current Status

 Carefully made programs have 5 faults per

1000 lines of code (LOC).

 Windows XP has 45M LOC, so it may have

225000 faults.

15

Comparison with Automobile Industry

 If the automobile industry had developed like

the software industry, we would all be driving

$25 cars.

 If car were like software, they would crash

twice a day for no reason, and when you

called for service, they would tell you to

reinstall the engine.

16

Specified and Implemented Program

Behaviors

S

Specification

(expected)

I

Implementation

(observed)

faults of omission faults of comission

correct

17

Specified, Implemented, and Tested

Program Behaviors

S

Specification

(expected) I

Implementation

(observed)

T

Test Cases

(verified)

1

2

3 4

5 6

7

Test Cases

 Test case generation

 Test case execution

18

19

Test Case Execution

test input

software

output

test case

expected output

equal? correct incident

20

Test Case Generation

 There are two approaches to determining test

cases: functional testing (or black box testing)

and structural testing (or white box testing).

 Functional testing: the software is viewed as a

black box and test cases are determined from

the functions described in the specification.

 Structural testing: the software is viewed as a

white box and test cases are determined from

the structure designed in the implementation.

21

Functional Testing

S

Specification

I

Implementation

T
Test Cases

A

S

Specification

I

Implementation

T
Test Cases

B

22

Structural Testing

S

Specification

I

Implementation

T
Test Cases

A

S

Specification

I

Implementation

T
Test Cases

B

23

Functional Testing v.s. Structural Testing

 It is hard for functional testing to identify

behaviors that are not specified (faults of

comission).

 It is hard for structural testing to identify

behaviors that are not implemented (faults of

omission).

 Neither approach is sufficient, both

approaches are needed.

24

Tracking of Incidents

 An incident tracking system keeps track of

the incidents that should be fixed so that all

incidents are properly resolved.

25

Tracking of Incidents

 Anyone who needs to know about an incident

should learn of it soon after it’s reported.

 No incident will go unfixed merely because

someone forgot about it.

 No incident will go unfixed on the whim of a

single programmer.

 A minimum of incidents will go unfixed merely

because of poor communication.

26

Regression Testing

 Regression testing reuses the test cases to

test the fixed (or a new version of) software

to make sure that the fixing does not

introduce new faults into the software.

27

Levels of Testing (V-Model)

Requirements

Specification

Design

Coding

Integration

Testing

System

Testing

Acceptance

Testing

verify
Unit

Testing

verify

verify

verify

28

Costs of Software Quality (Control Costs)

 Prevention costs include investments in

quality infrastructure and quality activities that

are not directed to a specific project or

system, being general to the organization.

 Appraisal costs include the costs of activities

performed for a specific project or system for

the purpose of detecting software errors.

29

Costs of Software Quality (Failure of

Control Costs)

 Internal failure costs include costs of

correcting errors that have been detected by

design reviews, software tests and

acceptance tests and completed before the

software is installed at customer sites.

 External failure costs include all costs of

correcting failures detected by customers or

the maintenance team after the software

system has been installed.

30

Software Quality Levels v.s. Costs

Quality level

Q
u

a
lit

y
 c

o
s
ts

low high

Total control cost

Total failure of

control cost

Total cost of software quality

Optimal software quality level

Minimal

total

cost

of

software

quality

31

Test Case Coverage

 Software quality costs affects software quality

levels.

 We can determine when to stop the software

testing based on available software quality

resources.

 The coverage of test cases is used to

determine the termination of software testing.

