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Lexical Analysis 
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Tokens 

Token (language): a set of strings 

– if, identifier, relop 

Pattern (grammar): a rule defining a token 

– if: if 

– identifier: letter followed by letters and digits 

– relop: < or <= or = or <> or >= or > 

Lexeme (sentence): a string matched by the 

pattern of a token 

– if, Pi, count, <, <= 
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Attributes of Tokens 

Attributes are used to distinguish different 

lexemes in a token 

– < if,   > 

– < identifier, pointer to symbol table entry > 

– < relop, ‘=’ > 

– < number, value > 

Tokens affect syntax analysis and attributes 

affect semantic analysis 
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Regular Expressions 

  is a RE denoting {} 

 If a  alphabet, then a is a RE denoting {a} 

 Suppose r and s are RE denoting L(r) and L(s) 

 (r) | (s) is a RE denoting L(r)  L(s) 

 (r) (s) is a RE denoting L(r)L(s) 

 (r)* is a RE denoting (L(r))* 

 (r) is a RE denoting L(r) 
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Examples 

  a | b   {a, b} 

  (a | b)(a | b) {aa, ab, ba, bb} 

  a*    {, a, aa, aaa, ... } 

  (a | b)*   the set of all strings of a’s and b’s 

  a | a*b   the set containing the string a and 

    all strings consisting of zero or  

    more a’s followed by a b 
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Regular Definitions 

Names for regular expressions 
 d1    r1 

 d2    r2 

      ... 

 dn    rn 

  where ri over alphabet  {d1, d2, ..., di-1} 

Examples: 

 letter   A | B | ... | Z | a | b | ... | z 

 digit    0 | 1 | ... | 9 

 identifier    {letter} ( {letter} | {digit} )* 
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Notational Shorthands 

One or more instances 
 (r)+ denoting (L(r))+ 
 r* = r+ |   
  r+ = r r* 

Zero or one instance 
 r? = r |  

Character classes 
 [abc] = a | b | c 
 [a-z] = a | b | ... | z 
 [^a-z] = any character except [a-z] 
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Examples 

delim     [ \t\n] 

ws          {delim}+ 

letter       [A-Za-z] 

digit      [0-9] 

id      {letter}({letter}|{digit})* 

number   {digit}+(.{digit}+)?(E[+\-]?{digit}+)? 
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Nondeterministic Finite 

Automata 

An NFA consists of 

– A finite set of states 

– A finite set of input symbols 

– A transition function (or transition table) that 

maps (state, symbol) pairs to sets of states 

– A state distinguished as start state 

– A set of states distinguished as final states 
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Transition Diagram 
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An Example 

RE:  (a | b)*abb 

States: {0, 1, 2, 3} 

Input symbols: {a, b} 

Transition function: 

(0,a) = {0,1},  (0,b) = {0} 

(1,b) = {2},   (2,b) = {3} 

Start state: 0 

Final states: {3}  
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Acceptance of NFA 

An NFA accepts an input string s iff there is 

some path in the transition diagram from the 

start state to some final state such that the 

edge labels along this path spell out s 
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An Example 
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  … 

abb: {0}  {0, 1}  {0, 2}  {0, 3} 
a b b 

aabb: {0}  {0, 1}  {0, 1}  {0, 2}  {0, 3} 
a b b a 
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Another Example 

RE:  aa* | bb* 

States: {0, 1, 2, 3, 4} 

Input symbols: {a, b} 

Transition function: 

(0,  ) = {1, 3},  (1, a) = {2},  (2, a) = {2} 

    (3, b) = {4},   (4, b) = {4} 

Start state: 0 

Final states: {2, 4} 


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Another Example 

start 
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Simulating an NFA 

Input. An input string ended with eof and an NFA 

with start state s0 and final states F. 

Output. The answer “yes” if accepts, “no” otherwise. 

begin 

   S := -closure({s0}); 

   c := nextchar; 

   while c <> eof do begin 

      S := -closure(move(S, c)); 

      c := nextchar 

   end; 

   if S  F <>   then return “yes” 

   else return “no” 

end. 



20 

Operations on NFA states 

move(s, c): set of NFA states reachable from 

NFA state s on input symbol c 

move(S, c): set of NFA states reachable from 

some NFA state s in S on input symbol c 

-closure(s): set of NFA states reachable from 

NFA state s on -transitions alone 

-closure(S): set of NFA states reachable from 

some NFA state s in S on -transitions alone 
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Transition Diagram 

0 3 1 2 
a b b 

a 

b 

start 

(a | b)*abb 
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An Example 

 bbababb     bbabab 

 

S = {0}      S = {0} 

S = move({0}, b) = {0}    S = move({0}, b) = {0} 

S = move({0}, b) = {0}    S = move({0}, b) = {0} 

S = move({0}, a) = {0, 1}   S = move({0}, a) = {0, 1} 

S = move({0, 1}, b) = {0, 2}   S = move({0, 1}, b) = {0, 2} 

S = move({0, 2}, a) = {0, 1}   S = move({0, 2}, a) = {0, 1} 

S = move({0, 1}, b) = {0, 2}   S = move({0, 1}, b) = {0, 2} 

S = move({0, 2}, b) = {0, 3}   S  {3} =    

S  {3} <>        

(a | b)*abb 
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Computation of -closure 

Input. An NFA and a set of NFA states S. 

Output. T = -closure(S). 

begin   /* A DFT along the -transitions */  

   push all states in S onto stack;  T := S; 

   while stack is not empty do begin 

      pop t, the top element, off of stack; 

      for each state u with an edge from t to u labeled  do 

         if u is not in T do begin 

            add u to T;   push u onto stack 

         end 

   end; 

   return T 

end. 
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An Example 
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An Example 

   bbabb     

S =  -closure({0}) = {0,1,2,4,7} 

S =  -closure(move({0,1,2,4,7}, b))  

   =  -closure({5}) = {1,2,4,5,6,7}  

S =  -closure(move({1,2,4,5,6,7}, b))  

   =  -closure({5}) = {1,2,4,5,6,7} 

S =  -closure(move({1,2,4,5,6,7}, a))  

   =  -closure({3,8}) = {1,2,3,4,6,7,8} 

S =  -closure(move({1,2,3,4,6,7,8}, b))  

   =  -closure({5,9}) = {1,2,4,5,6,7,9} 

S =  -closure(move({1,2,4,5,6,7,9}, b))  

   =  -closure({5,10}) = {1,2,4,5,6,7,10} 

S    {10}  <>       



26 

Deterministic Finite Automata 

A DFA is a special case of an NFA in 

which 

– no state has an -transition 

– for each state s and input symbol a, there is at 

most one edge labeled a leaving s 
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Transition Diagram 

(a | b)*abb 
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An Example 

RE:  (a | b)*abb 

States: {0, 1, 2, 3} 

Input symbols: {a, b} 

Transition function: 

(0,a) = 1, (1,a) = 1, (2,a) = 1, (3,a) = 1 

(0,b) = 0, (1,b) = 2, (2,b) = 3, (3,b) = 0 

Start state: 0 

Final states: {3}  
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Simulating a DFA 

Input. An input string ended with eof and a DFA with 

start state s0 and final states F. 

Output. The answer “yes” if accepts, “no” otherwise. 

begin 

   s := s0; 

   c := nextchar; 

   while c <> eof do begin 

      s := move(s, c); 

      c := nextchar 

   end; 

   if s is in F then return “yes” 

   else return “no” 

end. 
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An Example 

(a | b)*abb 

0 3 1 2 
a 

b b 

a 

b 

start 
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b 

a 

abb: 0  1  2  3 
a b b 

aabb: 0  1  1  2  3 
a b b a 
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共勉 

子貢曰︰貧而無諂，富而無驕，何如。 

子曰︰可也，未若貧而樂，富而好禮者也。 

子貢曰︰詩云︰「如切如磋，如琢如磨。」 

      其斯之謂與。 

子曰︰賜也，始可與言詩已矣； 

            告諸往而知來者。 

       -- 論語 
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Lexical Analyzer Generator 

RE 

NFA 

DFA 

construction 

construction 

Thompson’s 

Subset 
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From a RE to an NFA 

Thompson’s construction algorithm 

– For  , construct 

 

 

 

– For a in alphabet, construct 

i f 
start 

f i 
start 



a 
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From a RE to an NFA 

– Suppose N(s) and N(t) are NFA for RE s and t 

• for s | t, construct 

 

 

 

 

 

• for st, construct 

start 
i 

N(s) 

N(t) 



start 
i N(s) N(t) f 

f 
 


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From a RE to an NFA 

• for s*, construct 

 

 

 

 

 

 

 

 

• for (s), use N(s) 
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start 
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An Example 
(a | b)*abb 
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From an NFA to a DFA 

• Find the initial state of the DFA 

• Find all the states in the DFA 

• Construct the transition table 

• Find the final states of the DFA 

a set of NFA states  a DFA state 
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Subset Construction Algorithm 

Input. An NFA N. 

Output. A DFA D with states Dstates and trasition table Dtran. 

begin 

   add -closure(s0) as an unmarked state to Dstates; 

   while there is an unmarked state T in Dstates do begin 

      mark T; 

      for each input symbol a do begin 

         U := -closure(move(T, a)); 

         if U is not in Dstates then 

            add U as an unmarked state to Dstates; 

         Dtran[T, a] := U 

      end 

end. 
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An Example 

-closure({0}) = {0,1,2,4,7} = A 

-closure(move(A, a)) = -closure({3,8}) = {1,2,3,4,6,7,8} = B 

-closure(move(A, b)) = -closure({5}) = {1,2,4,5,6,7} = C 

-closure(move(B, a)) = -closure({3,8}) = B 

-closure(move(B, b)) = -closure({5,9}) = {1,2,4,5,6,7,9} = D 

-closure(move(C, a)) = -closure({3,8}) = B 

-closure(move(C, b)) = -closure({5}) = C 

-closure(move(D, a)) = -closure({3,8}) = B 

-closure(move(D, b)) = -closure({5,10}) = {1,2,4,5,6,7,10} = E 

-closure(move(E, a)) = -closure({3,8}) = B 

-closure(move(E, b)) = -closure({5}) = C 
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An Example 

State 
Input Symbol 

a b 

A = {0,1,2,4,7} 

B = {1,2,3,4,6,7,8} 

C = {1,2,4,5,6,7} 

D = {1,2,4,5,6,7,9} 

E = {1,2,4,5,6,7,10} 

B 

B 
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C 

D 
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An Example 

start 
{0,1,2,4,7} 

{1,2,3,4, 

  6,7,8} 

{1,2,4, 

  5,6,7} 

{1,2,4,5, 

  6,7,9} 

{1,2,4,5, 

  6,7,10} a 

a b 

b 

b 

a a 

b 

a 
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Time-Space Tradeoffs 

RE to NFA, simulate NFA 

– time: O(|r| * |x|) , space: O(|r|) 

RE to NFA, NFA to DFA, simulate DFA 

– time: O(|x|), space: O(2|r|) 

Lazy transition evaluation 

– transitions are computed as needed at run time; 

computed transitions are stored in cache for 

later use 
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Flex – Lexical Analyzer Generator 

A language for specifying lexical analyzers 

Flex compiler lex.yy.c lang.l 

C compiler 

-lfl 
a.out lex.yy.c 

a.out tokens source code 
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Flex Programs 

%{ 

auxiliary declarations 

%} 

regular definitions 

%% 

translation rules 

%% 

auxiliary procedures 
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Translation Rules 

P1  action1 

P2  action2 

 ... 

Pn  actionn 

where Pi are regular expressions and 

actioni are C program segments 
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An Example 

%% 

username    printf( “%s”, getlogin() ); 

By default, any text not matched by a flex lexical 

analyzer is copied to the output. This lexical 

analyzer copies its input file to its output with 

each occurrence of  “username” being replaced 

with the user’s login name. 
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An Example 

%{ 

 int num_lines = 0, num_chars = 0; 

%} 

%% 

\n ++num_lines; ++num_chars; 

. ++num_chars; /* all characters except \n */ 

%% 

main() { 

 yylex(); 

 printf(“lines = %d, chars = %d\n”,  

  num_lines, num_chars); 

} 
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An Example 

%{   

#define EOF 0 

#define LE  25 

#define EQ  26 

 ... 

%} 

delim  [ \t\n] 

ws  {delim}+ 

letter  [A-Za-z] 

digit  [0-9] 

id  {letter}({letter}|{digit})* 

number {digit}+(\.{digit}+)?(E[+\-]?{digit}+)? 

%% 
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An Example 

{ws}  { /* no action and no return */ } 

if  {return (IF);} 

else  {return (ELSE);} 

{id}  {yylval=install_id(); return (ID);} 

{number} {yylval=install_num(); return (NUMBER);} 

“<=”  {yylval=LE; return (RELOP);} 

“==”  {yylval=EQ; return (RELOP);} 

 ... 

<<EOF>> {return(EOF);} 

%% 

install_id() { ... } 

install_num() { ... } 
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Functions and Variables 

yylex() 

   a function implementing the lexical analyzer and returning 

   the token matched 

 

yytext 

   a global pointer variable pointing to the lexeme matched 

 

yyleng 

   a global variable giving the length of the lexeme matched 

 

yylval 

   an external global variable storing the attribute of the token 
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NFA from Flex Programs 

P1 | P2 | ... | Pn 

N(P2) 

... 

N(P1) 

N(Pn) 

s0 






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Rules 

Look for the longest lexeme 

– number 

Look for the first-listed pattern that matches 

the longest lexeme 

– keywords and identifiers 

List frequently occurring patterns first 

– white space 
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Rules 

View keywords as exceptions to the rule of 

identifiers 

– construct a keyword table 

Lookahead operator: r1/r2 - match a string in 

r1 only if followed by a string in r2 

– DO  5  I = 1. 25 

DO  5  I = 1, 25 

DO/({letter}|{digit})* = ({letter}|{digit})*, 
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Rules 

• Start condition: <s>r – match r only in start 
condition s 
 <str>[^”]* {/* eat up string body */} 

• Start conditions are declared in the first 
section using either %s or %x 
 %s str 

• A start condition is activated using the 
BEGIN action 
 \”   BEGIN(str); 

• The default start condition is INITIAL 
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Lexical Error Recovery 

Error: none of patterns matches a prefix of 

the remaining input 

Panic mode error recovery 

– delete successive characters from the remaining 

input until the pattern-matching can continue 

Error repair: 

– delete an extraneous character 

– insert a missing character 

– replace an incorrect character 

– transpose two adjacent characters 
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Maintaining Line Number 

• Flex allows to maintain the number of the 

current line in the global variable yylineno 

using the following option mechanism 

 

 %option  yylineno 

 

in the first section  
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共勉 

子曰︰學而不思則罔，思而不學則殆。 

子曰︰溫故而知新，可以為師矣。 

      -- 論語 


