
1

Lexical Analysis

2

Contents

Introduction to lexical analyzer

Tokens

Regular expressions (RE)

Finite automata (FA)

– deterministic and nondeterministic finite

automata (DFA and NFA)

– from RE to NFA

– from NFA to DFA

Flex - a lexical analyzer generator

3

Introduction to Lexical Analyzer

Lexical

Analyzer
Parser

Symbol

Table

token

next token

source

code

intermediate

code

4

Tokens

Token (language): a set of strings

– if, identifier, relop

Pattern (grammar): a rule defining a token

– if: if

– identifier: letter followed by letters and digits

– relop: < or <= or = or <> or >= or >

Lexeme (sentence): a string matched by the

pattern of a token

– if, Pi, count, <, <=

5

Attributes of Tokens

Attributes are used to distinguish different

lexemes in a token

– < if, >

– < identifier, pointer to symbol table entry >

– < relop, ‘=’ >

– < number, value >

Tokens affect syntax analysis and attributes

affect semantic analysis

6

Regular Expressions

  is a RE denoting {}

 If a  alphabet, then a is a RE denoting {a}

 Suppose r and s are RE denoting L(r) and L(s)

 (r) | (s) is a RE denoting L(r)  L(s)

 (r) (s) is a RE denoting L(r)L(s)

 (r)* is a RE denoting (L(r))*

 (r) is a RE denoting L(r)

7

Examples

 a | b {a, b}

 (a | b)(a | b) {aa, ab, ba, bb}

 a* {, a, aa, aaa, ... }

 (a | b)* the set of all strings of a’s and b’s

 a | a*b the set containing the string a and

 all strings consisting of zero or

 more a’s followed by a b

8

Regular Definitions

Names for regular expressions
 d1  r1

 d2  r2

 ...

 dn  rn

 where ri over alphabet  {d1, d2, ..., di-1}

Examples:

 letter  A | B | ... | Z | a | b | ... | z

 digit  0 | 1 | ... | 9

 identifier  {letter} ({letter} | {digit})*

9

Notational Shorthands

One or more instances
 (r)+ denoting (L(r))+
 r* = r+ | 
 r+ = r r*

Zero or one instance
 r? = r | 

Character classes
 [abc] = a | b | c
 [a-z] = a | b | ... | z
 [^a-z] = any character except [a-z]

10

Examples

delim  [\t\n]

ws  {delim}+

letter  [A-Za-z]

digit  [0-9]

id  {letter}({letter}|{digit})*

number  {digit}+(.{digit}+)?(E[+\-]?{digit}+)?

11

Nondeterministic Finite

Automata

An NFA consists of

– A finite set of states

– A finite set of input symbols

– A transition function (or transition table) that

maps (state, symbol) pairs to sets of states

– A state distinguished as start state

– A set of states distinguished as final states

12

Transition Diagram

0 3 1 2
a b b

a

b

start

(a | b)*abb

13

An Example

RE: (a | b)*abb

States: {0, 1, 2, 3}

Input symbols: {a, b}

Transition function:

(0,a) = {0,1}, (0,b) = {0}

(1,b) = {2}, (2,b) = {3}

Start state: 0

Final states: {3}

14

Acceptance of NFA

An NFA accepts an input string s iff there is

some path in the transition diagram from the

start state to some final state such that the

edge labels along this path spell out s

15

An Example

0 3 1 2
a b b

a

b

start

(a | b)*abb

abb

aabb

babb

aaabb

ababb

baabb

bbabb

 …

abb: {0}  {0, 1}  {0, 2}  {0, 3}
a b b

aabb: {0}  {0, 1}  {0, 1}  {0, 2}  {0, 3}
a b b a

16

Transition Diagram

start

aa* | bb*

0

3

1 2
a

b

a

b

4





17

Another Example

RE: aa* | bb*

States: {0, 1, 2, 3, 4}

Input symbols: {a, b}

Transition function:

(0,) = {1, 3}, (1, a) = {2}, (2, a) = {2}

 (3, b) = {4}, (4, b) = {4}

Start state: 0

Final states: {2, 4}



18

Another Example

start

aa* | bb*

0

3

1 2
a

b

a

b

4

aaa: {0}  {0, 1, 3}  {2}  {2}  {2}  {2}  {2}  {2}
a a a    





19

Simulating an NFA

Input. An input string ended with eof and an NFA

with start state s0 and final states F.

Output. The answer “yes” if accepts, “no” otherwise.

begin

 S := -closure({s0});

 c := nextchar;

 while c <> eof do begin

 S := -closure(move(S, c));

 c := nextchar

 end;

 if S  F <>  then return “yes”

 else return “no”

end.

20

Operations on NFA states

move(s, c): set of NFA states reachable from

NFA state s on input symbol c

move(S, c): set of NFA states reachable from

some NFA state s in S on input symbol c

-closure(s): set of NFA states reachable from

NFA state s on -transitions alone

-closure(S): set of NFA states reachable from

some NFA state s in S on -transitions alone

21

Transition Diagram

0 3 1 2
a b b

a

b

start

(a | b)*abb

22

An Example

 bbababb bbabab

S = {0} S = {0}

S = move({0}, b) = {0} S = move({0}, b) = {0}

S = move({0}, b) = {0} S = move({0}, b) = {0}

S = move({0}, a) = {0, 1} S = move({0}, a) = {0, 1}

S = move({0, 1}, b) = {0, 2} S = move({0, 1}, b) = {0, 2}

S = move({0, 2}, a) = {0, 1} S = move({0, 2}, a) = {0, 1}

S = move({0, 1}, b) = {0, 2} S = move({0, 1}, b) = {0, 2}

S = move({0, 2}, b) = {0, 3} S  {3} = 

S  {3} <> 

(a | b)*abb

23

Computation of -closure

Input. An NFA and a set of NFA states S.

Output. T = -closure(S).

begin /* A DFT along the -transitions */

 push all states in S onto stack; T := S;

 while stack is not empty do begin

 pop t, the top element, off of stack;

 for each state u with an edge from t to u labeled  do

 if u is not in T do begin

 add u to T; push u onto stack

 end

 end;

 return T

end.

24

An Example
(a | b)*abb

start
0

3

1

2
a

b

a b

4
















b

7 8 9 10

5

6

25

An Example

 bbabb

S = -closure({0}) = {0,1,2,4,7}

S = -closure(move({0,1,2,4,7}, b))

 = -closure({5}) = {1,2,4,5,6,7}

S = -closure(move({1,2,4,5,6,7}, b))

 = -closure({5}) = {1,2,4,5,6,7}

S = -closure(move({1,2,4,5,6,7}, a))

 = -closure({3,8}) = {1,2,3,4,6,7,8}

S = -closure(move({1,2,3,4,6,7,8}, b))

 = -closure({5,9}) = {1,2,4,5,6,7,9}

S = -closure(move({1,2,4,5,6,7,9}, b))

 = -closure({5,10}) = {1,2,4,5,6,7,10}

S  {10} <> 

26

Deterministic Finite Automata

A DFA is a special case of an NFA in

which

– no state has an -transition

– for each state s and input symbol a, there is at

most one edge labeled a leaving s

27

Transition Diagram

(a | b)*abb

0 3 1 2
a

b b

a

b

start

a

b

a

28

An Example

RE: (a | b)*abb

States: {0, 1, 2, 3}

Input symbols: {a, b}

Transition function:

(0,a) = 1, (1,a) = 1, (2,a) = 1, (3,a) = 1

(0,b) = 0, (1,b) = 2, (2,b) = 3, (3,b) = 0

Start state: 0

Final states: {3}

29

Simulating a DFA

Input. An input string ended with eof and a DFA with

start state s0 and final states F.

Output. The answer “yes” if accepts, “no” otherwise.

begin

 s := s0;

 c := nextchar;

 while c <> eof do begin

 s := move(s, c);

 c := nextchar

 end;

 if s is in F then return “yes”

 else return “no”

end.

30

An Example

(a | b)*abb

0 3 1 2
a

b b

a

b

start

a

b

a

abb: 0  1  2  3
a b b

aabb: 0  1  1  2  3
a b b a

31

共勉

子貢曰︰貧而無諂，富而無驕，何如。

子曰︰可也，未若貧而樂，富而好禮者也。

子貢曰︰詩云︰「如切如磋，如琢如磨。」

 其斯之謂與。

子曰︰賜也，始可與言詩已矣；

 告諸往而知來者。

 -- 論語

32

Lexical Analyzer Generator

RE

NFA

DFA

construction

construction

Thompson’s

Subset

33

From a RE to an NFA

Thompson’s construction algorithm

– For  , construct

– For a in alphabet, construct

i f
start

f i
start



a

34

From a RE to an NFA

– Suppose N(s) and N(t) are NFA for RE s and t

• for s | t, construct

• for st, construct

start
i

N(s)

N(t)



start
i N(s) N(t) f

f
 



35

From a RE to an NFA

• for s*, construct

• for (s), use N(s)

i


N(s) f






start

36

An Example
(a | b)*abb

start

3 2
a

0







7

a
8

b
9

b
10

b
4 5

1









6

37

From an NFA to a DFA

• Find the initial state of the DFA

• Find all the states in the DFA

• Construct the transition table

• Find the final states of the DFA

a set of NFA states  a DFA state

38

Subset Construction Algorithm

Input. An NFA N.

Output. A DFA D with states Dstates and trasition table Dtran.

begin

 add -closure(s0) as an unmarked state to Dstates;

 while there is an unmarked state T in Dstates do begin

 mark T;

 for each input symbol a do begin

 U := -closure(move(T, a));

 if U is not in Dstates then

 add U as an unmarked state to Dstates;

 Dtran[T, a] := U

 end

end.

39

An Example

-closure({0}) = {0,1,2,4,7} = A

-closure(move(A, a)) = -closure({3,8}) = {1,2,3,4,6,7,8} = B

-closure(move(A, b)) = -closure({5}) = {1,2,4,5,6,7} = C

-closure(move(B, a)) = -closure({3,8}) = B

-closure(move(B, b)) = -closure({5,9}) = {1,2,4,5,6,7,9} = D

-closure(move(C, a)) = -closure({3,8}) = B

-closure(move(C, b)) = -closure({5}) = C

-closure(move(D, a)) = -closure({3,8}) = B

-closure(move(D, b)) = -closure({5,10}) = {1,2,4,5,6,7,10} = E

-closure(move(E, a)) = -closure({3,8}) = B

-closure(move(E, b)) = -closure({5}) = C

40

An Example

State
Input Symbol

a b

A = {0,1,2,4,7}

B = {1,2,3,4,6,7,8}

C = {1,2,4,5,6,7}

D = {1,2,4,5,6,7,9}

E = {1,2,4,5,6,7,10}

B

B

B

B

B C

E

C

D

C

41

An Example

start
{0,1,2,4,7}

{1,2,3,4,

 6,7,8}

{1,2,4,

 5,6,7}

{1,2,4,5,

 6,7,9}

{1,2,4,5,

 6,7,10} a

a b

b

b

a a

b

a
b

42

Time-Space Tradeoffs

RE to NFA, simulate NFA

– time: O(|r| * |x|) , space: O(|r|)

RE to NFA, NFA to DFA, simulate DFA

– time: O(|x|), space: O(2|r|)

Lazy transition evaluation

– transitions are computed as needed at run time;

computed transitions are stored in cache for

later use

43

Flex – Lexical Analyzer Generator

A language for specifying lexical analyzers

Flex compiler lex.yy.c lang.l

C compiler

-lfl
a.out lex.yy.c

a.out tokens source code

44

Flex Programs

%{

auxiliary declarations

%}

regular definitions

%%

translation rules

%%

auxiliary procedures

45

Translation Rules

P1 action1

P2 action2

 ...

Pn actionn

where Pi are regular expressions and

actioni are C program segments

46

An Example

%%

username printf(“%s”, getlogin());

By default, any text not matched by a flex lexical

analyzer is copied to the output. This lexical

analyzer copies its input file to its output with

each occurrence of “username” being replaced

with the user’s login name.

47

An Example

%{

 int num_lines = 0, num_chars = 0;

%}

%%

\n ++num_lines; ++num_chars;

. ++num_chars; /* all characters except \n */

%%

main() {

 yylex();

 printf(“lines = %d, chars = %d\n”,

 num_lines, num_chars);

}

48

An Example

%{

#define EOF 0

#define LE 25

#define EQ 26

 ...

%}

delim [\t\n]

ws {delim}+

letter [A-Za-z]

digit [0-9]

id {letter}({letter}|{digit})*

number {digit}+(\.{digit}+)?(E[+\-]?{digit}+)?

%%

49

An Example

{ws} { /* no action and no return */ }

if {return (IF);}

else {return (ELSE);}

{id} {yylval=install_id(); return (ID);}

{number} {yylval=install_num(); return (NUMBER);}

“<=” {yylval=LE; return (RELOP);}

“==” {yylval=EQ; return (RELOP);}

 ...

<<EOF>> {return(EOF);}

%%

install_id() { ... }

install_num() { ... }

50

Functions and Variables

yylex()

 a function implementing the lexical analyzer and returning

 the token matched

yytext

 a global pointer variable pointing to the lexeme matched

yyleng

 a global variable giving the length of the lexeme matched

yylval

 an external global variable storing the attribute of the token

51

NFA from Flex Programs

P1 | P2 | ... | Pn

N(P2)

...

N(P1)

N(Pn)

s0







52

Rules

Look for the longest lexeme

– number

Look for the first-listed pattern that matches

the longest lexeme

– keywords and identifiers

List frequently occurring patterns first

– white space

53

Rules

View keywords as exceptions to the rule of

identifiers

– construct a keyword table

Lookahead operator: r1/r2 - match a string in

r1 only if followed by a string in r2

– DO 5 I = 1. 25

DO 5 I = 1, 25

DO/({letter}|{digit})* = ({letter}|{digit})*,

54

Rules

• Start condition: <s>r – match r only in start
condition s
 <str>[^”]* {/* eat up string body */}

• Start conditions are declared in the first
section using either %s or %x
 %s str

• A start condition is activated using the
BEGIN action
 \” BEGIN(str);

• The default start condition is INITIAL

55

Lexical Error Recovery

Error: none of patterns matches a prefix of

the remaining input

Panic mode error recovery

– delete successive characters from the remaining

input until the pattern-matching can continue

Error repair:

– delete an extraneous character

– insert a missing character

– replace an incorrect character

– transpose two adjacent characters

56

Maintaining Line Number

• Flex allows to maintain the number of the

current line in the global variable yylineno

using the following option mechanism

 %option yylineno

in the first section

57

共勉

子曰︰學而不思則罔，思而不學則殆。

子曰︰溫故而知新，可以為師矣。

 -- 論語

