Software Quality Engineering Slide (Ch.15) 1

Software Quality Engineering:
Testing, Quality Assurance, and

Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu
www.engr.smu.edu/~tian/SQEbook

Chapter 15. Formal Verification

e General idea and approaches

e Axiomatic verification

e Other approaches

e Summary and Perspectives

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 2

QA Alternatives

e Defect and QA:

> Defect: error/fault/failure.
> Defect prevention/removal/containment.
> Map to major QA activities

e Defect prevention:
Error source removal & error blocking

e Defect removal: Inspection/testing/etc.

e Defect containment: Fault tolerance and
failure containment (safety assurance)

e Special case (this chapter):
formal verification (& formal specification)

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 3

QA and Formal Verification

e Formal methods = formal specification
+ formal verification

e Formal specification (FS):

> AS part of defect prevention

> Formal = prevent/reduce defect injec-
tion due to imprecision, ambiguity, etc.

> Briefly covered as related to FV.

e Formal verification (FV):

> As part of QA, but focus on positive:
“Prove absence of fault”

> People intensive

> Several commonly used approaches

> Chapter 15 focus on basic ideas

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 4

Formal Specification: Ideas

e Formal specification:

> Correctness focus

> Different levels of details

> 3Cs: complete, clear, consistent

> Two types: descriptive & behavioral

e Descriptive formal specifications:

> Logic: pre-/post-conditions.

> Math functions

> Notations and language support:
Z, VDM, etc.

e Behavioral formal specifications:
FSM, Petri-Net, etc.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) b

Formal Verification: Ideas

e ‘‘Testing shows the presence of errors, not
their absence.” — Dijkstra

e Formal verification: proof of correctness

> Formal specs: as pre/post-conditions

> Axioms for components or functional units
> Composition (bottom-up, chaining)

> Development and verification together

e Other related approaches:

> Semi-formal verification
> Model checking
> Inspection for correctness

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 6

Formal Verification Basics

e Basic approaches:

> Floyd/Hoare axiomatic
> Dijkstra/Gries weakest precond. (WP)
> Mills' prog calculus/functional approach

e Basis for verification:

> logic (axiomatic and WP)
> mathematical function (Mills)
> other formalisms

e Procedures/steps used:

> bottom-up (axiomatic)
> backward chaining (WP)
> forward composition (Mills), etc.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) Ve

Object and General Approach

e Basic block: statements

> block (begin/end)

> concatenation (S1; S2)

> conditional (if-then/if-then-else)
> loop (while)

> assignment

e Formal verification

> rules for above units
> composition
> connectors (logical consequences)

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 8

Axiomatic Approach

e Floyd axioms/flowchart

> Annotation on flowchart
> Logical relations
> Verification using logic

e Hoare axioms/formalization

Pre/Post conditions
Composition (bottom-up)
Loops and functions/parameters
Invariants (loops, functions)
Basis for many later approaches

>
>
>
>
>
> Focus of Chapter 15

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 9

Axiomatic Correctness

e Notations

> Statements: §;

> Logical conditions: {P} etc.
> Schema: {P} S {Q}

> Axioms/rules:

conditions or schemas
conclusion

e AXioms:

> Schema for assignment
> Basic statement types

> “Connectors”

> Loop invariant

> Examples in Section 15.2

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 10

AXxiomatic Approach: Formal Specs

e Formal specification:

> Logical (descriptive) type.
> Pre-/post-conditions.

> Pair as specifications at different levels
of granularity.

e Example specification for a segment:

> Input/output variables: z, v.
> Pre-/post-conditions: P, Q.
> Pre-condition: non-negative input

{P=xz>0}
> Post-condition: square root computed
{Q=y ==z}

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 11

Axiomatic Approach: Inference Rules

e Inference rules: Consequence axioms

> Logical implications and deductions.
> Flexibility for different pre-/post-cond.

e Consequence 1: relaxing post-condition

{P}S{R}, {R} = {Q}
1P}S{Q}

Axiom A1l :

e Consequence 2: more strict pre-condition
{P} = {R}, {R}S{Q}

{P}S{Q}
Compare to WP (later).

Axiom A2 :

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 12

AxXiomatic Approach: AXioms

e Assignment schema:

> Axiom A3 : {P/}y « z{P}
> where {P{} is derived from P with all
free occurrence of y replaced by =.
> Example: b «+— b — w with
— post-condition b > 0
(maintaining non-negative balance)
— pre-condition is then b —w > 0
or b > w, sufficient fund for withdraw.

e AXiom A4. Sequential concatenation:
{P}S1{Q}, {Q}S2{R}
{P}S1; So{R}
Used to build bottom-up proofs.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 13

AxXiomatic Approach: AXioms

e Conditional axioms.

e Conditional 1, if-then-else (Axiom A5):

{P AB}S1{Q}, {PAN—-B}S2{Q}
{P} if B then S else S> {Q}

e Conditional 2, empty else (Axiom A6):

{PAB}S{Q}, {PAN-B} = {Q}
{P} if B then S {Q}

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 14

AxXiomatic Approach: AXioms

e Loop type: while cond do something

e Loop axiom (Axiom AT7):

{P N B}S{P}
{P} while B do S {P AN —-B}

e Specialized techniques for loops:

> Loop invariant: P (often labeled I)
> How to select |loop invariant?
> Proof of basic loop: Axiom ATY.

e Loop termination verification:

> P positive within a loop
> P > Pz'—l—l

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 15

Axiomatic Proofs

e Given: program, pre/post-conditions

e Basic proof procedure:

> Add annotations in between statements.
> Apply axioms to individual statements
using assignment schema (A3).
> Simple composition (concatenation, A4).
> More complex composition:
— if-then-else (A5) and if-then (A6)
— loop axiom (A7): often the focus.
> Consequence rules (Al and A2) as con-
nectors mixed with the above.

e General proof focuses:

> Loop termination and invariants

> Connecting (bottom-up)

> Use hierarchical (stepwise abstraction)
structure as guide for different parts
(top-down guide bottom-up procedure)

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 16

Sample Axiomatic Proof

e Sample axiomatic proof (pp.257-259):

> Factorial function: Fig 15.1

> Pre-cond: {n > 1}

> Post-cond: {y =n!}

> Key: loop.

> Other steps: fairly straightforward.

e Loop invariant development

> y holds partial results.
> Connection with loop condition z > 1.
> Resulting in post-condition after loop.

e Observation: proof much longer than the
simple program itself

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 17

Axiomatic Proofs

e (General observations:

> Many steps involved

> Length of proof: An order of magnitude
longer than the program

> Difficulty with loops

e Larger/more complex programs:

> Many elements and (nested!) loops
= interaction, coordination
> Arrays and functions/procedures
= more complicated schemas/axioms
> Much harder.
> Selective verification ideas?
See Chapter 16, safety assurance part.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 18

WP Approach

e Dijkstra/Gries approach:

> Weakest preconditions: wp(S, Q).
> Dijkstra model: Predicate transforms .
> Gries “Science of Programming” book.

e Similarity to axiomatic approach:

> Logic based, same annotations.
> Similar units (axioms).
> {P}S{Q} interpreted as P = wp(S, Q).

e Different procedures:

> Start with post-condition (output)
> Backward chaining of WPs

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 19

Functional Approach

e Functional approach

> Mills’ program calculus
> Symbolic execution, Table 15.1 (p.261).
> Code reading/chunking/cognition ideas.

e Functional approach elements

> Mills box notation

> Basic function associated with individ-
ual statements

> Compositional rules

> Forward flow/symbolic execution

> Comparison with Dijkstra’'s wp

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 20

Formal Verification: Limitations

e Seven myths (Zelkowitz, 1993):

FM guarantee that software is perfect.
They work by proving correctness.
Only highly critical system benefits.
FM involve complex mathematics.

FM increase cost of development.
They are incomprehensible to client.
Nobody uses them for real projects.

v VvV v VvV VvV Vv V

e Refutation/discussion (Zelkowitz, 1993)

e However, some quantified validity
= alternative FV methods.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 21

Other Models/Approaches

e Making FV more easily/widely usable.

e Other models for formal verification:

> State machines and model checking.
> Algebraic data spec/verification.

> Petri nets, etc.

> Related checking/proof procedures.

e (General assessment

Extension to FM before.

More advantages & reduced limitations.
Formal analysis vs. verification.

May lead to additional automation.
Hybrid methods.

>
>
>
>
>
> Adaptation and semi-formal methods.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 22

Formal Verification: Other

e Algebraic specification/verification:

Specify and verify data properties
Behavior specification

Base case

Constructions

Domain/behavior mapping

Use in verification

v VvV VvV VvV V V

e Stack example

> newstack

> push

> pop

> Canonical form

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 23

Formal Verification: Other

e Model checking:

> Behavioral specification via FSMSs.

> Proposition: property of interest expressed
as a suitable formula.

> Model checker: algorithm/program to
check proposition validity.
— Proof. positive result.
— Counterexample: negative result.

e Other approaches and discussions:

> Algorithm analysis.

> Petri-net modeling and analysis.

> Tabular/semi-formal method.

> Formal inspection based.

> Limited aspects = easier to perform.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 24

FM: Applications

e \What can be formally verified:

> Program code.
> Formal design, documentation, etc.
> Protocols: timing properties
— deadlock/starvation/etc.
> Hardware verification.
> Distributed program verification.
> Connected to software process.

e Stepwise refinement/verification process:

> Design and verification together.
> Different levels of abstraction.
> e.g., UNITY system.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 25

Application in Software Safety

e Leveson approach (Chapter 16)

> Focused verification

> Driven by hazard analysis

> Distributed over development phases
> Which FM7? as appropriate.

e Other applications:

> Cleanroom:
combination with statistical testing
> Yih/Tian: PSC, Chapter 16.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 26

Formal Verification: Summary

e Basic features:

> Axioms/rules for all language features
> Ignore some practical issues:

Size, capacity, side effects, etc.?
> Forward/backward/bottom-up procedure.
> Develop invariants: key, but hard.

e (General assessment:

> Difficult, even on small programs
> Very hard to scale up
> Inappropriate to non-math. problems
> Hard to automate
— manual process = errors]
> Worthwhile for critical applications

e Comparison to other QA: Chapter 17.

Jeff Tian, Wiley-IEEE/CS 2005



