
Software Quality Engineering Slide (Ch.15) 1

Software Quality Engineering:

Testing, Quality Assurance, and

Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu
www.engr.smu.edu/∼tian/SQEbook

Chapter 15. Formal Verification

• General idea and approaches

• Axiomatic verification

• Other approaches

• Summary and Perspectives

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 2

QA Alternatives

• Defect and QA:

. Defect: error/fault/failure.

. Defect prevention/removal/containment.

. Map to major QA activities

• Defect prevention:

Error source removal & error blocking

• Defect removal: Inspection/testing/etc.

• Defect containment: Fault tolerance and

failure containment (safety assurance)

• Special case (this chapter):

formal verification (& formal specification)

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 3

QA and Formal Verification

• Formal methods = formal specification

+ formal verification

• Formal specification (FS):

. As part of defect prevention

. Formal ⇒ prevent/reduce defect injec-

tion due to imprecision, ambiguity, etc.

. Briefly covered as related to FV.

• Formal verification (FV):

. As part of QA, but focus on positive:

“Prove absence of fault”

. People intensive

. Several commonly used approaches

. Chapter 15 focus on basic ideas

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 4

Formal Specification: Ideas

• Formal specification:

. Correctness focus

. Different levels of details

. 3Cs: complete, clear, consistent

. Two types: descriptive & behavioral

• Descriptive formal specifications:

. Logic: pre-/post-conditions.

. Math functions

. Notations and language support:

Z, VDM, etc.

• Behavioral formal specifications:

FSM, Petri-Net, etc.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 5

Formal Verification: Ideas

• “Testing shows the presence of errors, not

their absence.” — Dijkstra

• Formal verification: proof of correctness

. Formal specs: as pre/post-conditions

. Axioms for components or functional units

. Composition (bottom-up, chaining)

. Development and verification together

• Other related approaches:

. Semi-formal verification

. Model checking

. Inspection for correctness

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 6

Formal Verification Basics

• Basic approaches:

. Floyd/Hoare axiomatic

. Dijkstra/Gries weakest precond. (WP)

. Mills’ prog calculus/functional approach

• Basis for verification:

. logic (axiomatic and WP)

. mathematical function (Mills)

. other formalisms

• Procedures/steps used:

. bottom-up (axiomatic)

. backward chaining (WP)

. forward composition (Mills), etc.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 7

Object and General Approach

• Basic block: statements

. block (begin/end)

. concatenation (S1; S2)

. conditional (if-then/if-then-else)

. loop (while)

. assignment

• Formal verification

. rules for above units

. composition

. connectors (logical consequences)

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 8

Axiomatic Approach

• Floyd axioms/flowchart

. Annotation on flowchart

. Logical relations

. Verification using logic

• Hoare axioms/formalization

. Pre/Post conditions

. Composition (bottom-up)

. Loops and functions/parameters

. Invariants (loops, functions)

. Basis for many later approaches

. Focus of Chapter 15

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 9

Axiomatic Correctness

• Notations

. Statements: Si

. Logical conditions: {P} etc.

. Schema: {P} S {Q}

. Axioms/rules:

conditions or schemas

conclusion

• Axioms:

. Schema for assignment

. Basic statement types

. “Connectors”

. Loop invariant

. Examples in Section 15.2

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 10

Axiomatic Approach: Formal Specs

• Formal specification:

. Logical (descriptive) type.

. Pre-/post-conditions.

. Pair as specifications at different levels

of granularity.

• Example specification for a segment:

. Input/output variables: x, y.

. Pre-/post-conditions: P , Q.

. Pre-condition: non-negative input

{P ≡ x ≥ 0}

. Post-condition: square root computed

{Q ≡ y =
√

x}.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 11

Axiomatic Approach: Inference Rules

• Inference rules: Consequence axioms

. Logical implications and deductions.

. Flexibility for different pre-/post-cond.

• Consequence 1: relaxing post-condition

Axiom A1 :
{P}S{R}, {R} ⇒ {Q}

{P}S{Q}

• Consequence 2: more strict pre-condition

Axiom A2 :
{P} ⇒ {R}, {R}S{Q}

{P}S{Q}
Compare to WP (later).

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 12

Axiomatic Approach: Axioms

• Assignment schema:

. Axiom A3 : {P y
x}y ← x{P}

. where {P y
x} is derived from P with all

free occurrence of y replaced by x.

. Example: b← b− w with

– post-condition b ≥ 0

(maintaining non-negative balance)

– pre-condition is then b− w ≥ 0

or b ≥ w, sufficient fund for withdraw.

• Axiom A4. Sequential concatenation:

{P}S1{Q}, {Q}S2{R}
{P}S1;S2{R}

Used to build bottom-up proofs.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 13

Axiomatic Approach: Axioms

• Conditional axioms.

• Conditional 1, if-then-else (Axiom A5):

{P ∧B}S1{Q}, {P ∧ ¬B}S2{Q}
{P} if B then S1 else S2 {Q}

• Conditional 2, empty else (Axiom A6):

{P ∧B}S{Q}, {P ∧ ¬B} ⇒ {Q}
{P} if B then S {Q}

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 14

Axiomatic Approach: Axioms

• Loop type: while cond do something

• Loop axiom (Axiom A7):

{P ∧B}S{P}
{P} while B do S {P ∧ ¬B}

• Specialized techniques for loops:

. Loop invariant: P (often labeled I)

. How to select loop invariant?

. Proof of basic loop: Axiom A7.

• Loop termination verification:

. P positive within a loop

. Pi > Pi+1

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 15

Axiomatic Proofs

• Given: program, pre/post-conditions

• Basic proof procedure:

. Add annotations in between statements.

. Apply axioms to individual statements

using assignment schema (A3).

. Simple composition (concatenation, A4).

. More complex composition:

– if-then-else (A5) and if-then (A6)

– loop axiom (A7): often the focus.

. Consequence rules (A1 and A2) as con-

nectors mixed with the above.

• General proof focuses:

. Loop termination and invariants

. Connecting (bottom-up)

. Use hierarchical (stepwise abstraction)

structure as guide for different parts

(top-down guide bottom-up procedure)

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 16

Sample Axiomatic Proof

• Sample axiomatic proof (pp.257-259):

. Factorial function: Fig 15.1

. Pre-cond: {n ≥ 1}

. Post-cond: {y = n!}

. Key: loop.

. Other steps: fairly straightforward.

• Loop invariant development

. y holds partial results.

. Connection with loop condition i > 1.

. Resulting in post-condition after loop.

• Observation: proof much longer than the

simple program itself

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 17

Axiomatic Proofs

• General observations:

. Many steps involved

. Length of proof: An order of magnitude

longer than the program

. Difficulty with loops

• Larger/more complex programs:

. Many elements and (nested!) loops

⇒ interaction, coordination

. Arrays and functions/procedures

⇒ more complicated schemas/axioms

. Much harder.

. Selective verification ideas?

See Chapter 16, safety assurance part.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 18

WP Approach

• Dijkstra/Gries approach:

. Weakest preconditions: wp(S, Q).

. Dijkstra model: Predicate transforms .

. Gries “Science of Programming” book.

• Similarity to axiomatic approach:

. Logic based, same annotations.

. Similar units (axioms).

. {P}S{Q} interpreted as P ⇒ wp(S, Q).

• Different procedures:

. Start with post-condition (output)

. Backward chaining of WPs

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 19

Functional Approach

• Functional approach

. Mills’ program calculus

. Symbolic execution, Table 15.1 (p.261).

. Code reading/chunking/cognition ideas.

• Functional approach elements

. Mills box notation

. Basic function associated with individ-

ual statements

. Compositional rules

. Forward flow/symbolic execution

. Comparison with Dijkstra’s wp

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 20

Formal Verification: Limitations

• Seven myths (Zelkowitz, 1993):

. FM guarantee that software is perfect.

. They work by proving correctness.

. Only highly critical system benefits.

. FM involve complex mathematics.

. FM increase cost of development.

. They are incomprehensible to client.

. Nobody uses them for real projects.

• Refutation/discussion (Zelkowitz, 1993)

• However, some quantified validity

⇒ alternative FV methods.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 21

Other Models/Approaches

• Making FV more easily/widely usable.

• Other models for formal verification:

. State machines and model checking.

. Algebraic data spec/verification.

. Petri nets, etc.

. Related checking/proof procedures.

• General assessment

. Extension to FM before.

. More advantages & reduced limitations.

. Formal analysis vs. verification.

. May lead to additional automation.

. Hybrid methods.

. Adaptation and semi-formal methods.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 22

Formal Verification: Other

• Algebraic specification/verification:

. Specify and verify data properties

. Behavior specification

. Base case

. Constructions

. Domain/behavior mapping

. Use in verification

• Stack example

. newstack

. push

. pop

. Canonical form

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 23

Formal Verification: Other

• Model checking:

. Behavioral specification via FSMs.

. Proposition: property of interest expressed

as a suitable formula.

. Model checker: algorithm/program to

check proposition validity.

– Proof: positive result.

– Counterexample: negative result.

• Other approaches and discussions:

. Algorithm analysis.

. Petri-net modeling and analysis.

. Tabular/semi-formal method.

. Formal inspection based.

. Limited aspects ⇒ easier to perform.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 24

FM: Applications

• What can be formally verified:

. Program code.

. Formal design, documentation, etc.

. Protocols: timing properties

– deadlock/starvation/etc.

. Hardware verification.

. Distributed program verification.

. Connected to software process.

• Stepwise refinement/verification process:

. Design and verification together.

. Different levels of abstraction.

. e.g., UNITY system.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 25

Application in Software Safety

• Leveson approach (Chapter 16)

. Focused verification

. Driven by hazard analysis

. Distributed over development phases

. Which FM? as appropriate.

• Other applications:

. Cleanroom:

combination with statistical testing

. Yih/Tian: PSC, Chapter 16.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.15) 26

Formal Verification: Summary

• Basic features:

. Axioms/rules for all language features

. Ignore some practical issues:

Size, capacity, side effects, etc.?

. Forward/backward/bottom-up procedure.

. Develop invariants: key, but hard.

• General assessment:

. Difficult, even on small programs

. Very hard to scale up

. Inappropriate to non-math. problems

. Hard to automate

– manual process ⇒ errors↑
. Worthwhile for critical applications

• Comparison to other QA: Chapter 17.

Jeff Tian, Wiley-IEEE/CS 2005


