Software Quality Engineering:

Testing, Quality Assurance, and

Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu www.engr.smu.edu/~tian/SQEbook

Chapter 14. Inspection

- Basic Concept and Generic Process
- Fagan Inspection
- Other Inspection and Related Activities
- Other Issues

QA Alternatives

- Defect and QA:
 - ▷ Defect: error/fault/failure.
 - ▷ Defect prevention/removal/containment.
 - ▷ Map to major QA activities
- Defect prevention: Error blocking and error source removal.
- Defect removal:
 - \triangleright Inspection this chapter.
 - ▷ Testing, etc.
- Defect containment: Fault tolerance and failure containment (safety assurance).

Inspection as Part of QA

- Throughout the software process
 - Coding phase: code inspection
 - Design phase: design inspection
 - Inspection in other phases and at transitions from one phase to another
- Many different software artifacts:
 - ▷ program code, typically
 - > requirement/design/other documents
 - ▷ charts/models/diagrams/tables/etc.
- Other characteristics:
 - ▷ People focus.
 - ▷ Not waiting for implemented system.
 - ▷ Complementary to other QA activities.

Generic Process and Variations

- Generic process/steps: Fig 14.1 (p.238)
 - 1. Preparation (individual)
 - 2. Collection (group/meeting)
 - 3. Repair (followup)
- Inspection Process Variations:
 - ▷ Team organization and size (who?)
 - Inspection objects and objectives?
 - Number/coordination of multiple sessions?
 - Collection technique?
 - Detect (& classify/analyze) defects?
 - ▷ Use of post-collection feedback?
 - Mostly determined at preparation step

- General description
 - ▷ Earliest, Fagan at IBM
 - Lead to other variations
 - ▷ Generic process and steps
- Six steps of Fagan inspection:
 - 1. Planning
 - 2. Overview (1-to-n meeting)
 - 3. Preparation (individual inspection)
 - 4. Inspection (n-to-n meeting)
 - 5. Rework
 - 6. Follow-up
- Mapping to generic inspection process in Fig 14.1 (p.238)

1. Planning

- ▷ Entry criteria: what to inspect
- ▷ Team size: about 4 persons
- Developers/testers from similar projects
- Effectiveness concerns (assumptions)
- Inspectors not authors
- 2. Overview
 - > Author-inspectors meeting
 - General background information
 - functional/structural/info., intentions
 - ▷ Assign individual tasks:
 - coverage of important areas
 - moderate overlap

- 3. Preparation or individual inspection
 - Independent analysis/examination
 - Code as well as other document
 - ▷ Individual results:
 - questions/guesses
 - potential defects
- 4. Inspection (generic: collection)
 - Meeting to collect/consolidate individual inspection results
 - ▷ Team leader/meeting moderator (1)
 - Reader/presenter: summarize/paraphrase
 for individual pieces (assignment)
 - Defect identification, but not solutions, to ensure inspection effectiveness
 - ▷ No more than 2 hours
 - Inspection report

- 5. Rework
 - ▷ Author's response
 - Defect fixing (solutions)
- 6. Follow-up
 - Resolution verification by moderator
 - ▷ Re-inspection?
 - Fagan inspection in practice
 - ▷ Widely used in industry
 - ▷ Evaluation studies
 - Variations and other inspections

Fagan Inspection: Findings

- Importance of preparation:
 - Most defect detected
 - Meetings to consolidate defects
 - $\triangleright \Rightarrow$ alternatives focusing on preparation.
- Other important findings:
 - ▷ Important role of the moderator
 - ▷ Team size and #sessions tailored to env.
 - Prefer systematic detection techniques
 to ad-hoc ones
 - ▷ More use of inspection feedback/analysis

Other Inspection Methods

- Variations to Fagan inspection: size/scope and formality variations.
- Alternative inspection techniques/processes:
 - ▷ Two-person inspection
 - Meetingless inspections
 - ▷ Gilb inspection
 - Phased inspections
 - N-fold inspections
 - Informal check/review/walkthrough
 - Active design reviews
 - Inspection for program correctness
 - ▷ Code reading
 - ▷ Code reading with stepwise abstraction

Reduced Size/Scope Inspection

- Two-person inspection
 - Fagan inspection simplified
 - Author-inspector pair
 - reciprocal: mutually beneficial
 - Smaller scale program
- Meetingless inspections
 - Importance of preparation (indiv. insp.) (most defects found during preparation)
 - ▷ Empirical evidence
 - 1-on-1 instead of team meetings
 (or other feedback mechanisms)

Gilb Inspection (Expanded Fagan)

- Key: A "process brainstorming" meeting
 - ▷ root cause analysis
 - ▷ right after inspection meeting
 - ▷ parallel to edit (rework)
 - ▷ aim at preventive actions/improvement
- Other characteristics
 - Clearly identified input,
 checklists/rules extensively used
 - Output include change request and suggested process improvement, in addition to inspected documents.
 - ▷ Team size: 4-6 people.
 - More emphasis on feedback loop: more closely resemble our SQE process (Fig 5.1, p.54)

Other Expanded Fagan Inspections

- Phased inspections
 - ▷ Expand Fagan inspection
 - Multiple phases/meetings
 - ▷ Each on a specific area/problem-type
 - Dynamic team make-up
- N-fold inspections
 - ▷ Idea similar to NVP
 - ▷ N parallel inspections, 1 moderator
 - ▷ Duplications \Rightarrow cost \uparrow
 - ▷ Discussed in connection to NVP (Ch.16)

Informal Inspection

- Desk check (self conducted):
 - Should focus on conceptual problems
 - Use tools for problems with syntax/spelling/format/etc.
- Informal review (by others):
 - ▷ Similar to desk check, but by others
 - Benefit from independent/orthogonal views
 - Group reviews for phase transitions
- Walkthroughs:
 - ▷ More organized, but still informal
 - Leading role of author/moderator
 - Less preparation by other participants than in inspection

Formal Inspection: Code Reading

- Code reading
 - ▷ Focus on code
 - > Optional meetings
- Code reading by stepwise abstraction
 - ▷ Variation to code reading
 - A formalized code reading technique
 - Top-down decomposition and bottom-up abstraction
 - Empirical support for the program comprehension model
 Fig 14.2 (p.245)
 - Recent evidence of effectiveness

Formal Inspection: ADR & Correctness

- Active design reviews (ADR)
 - ▷ Another formal inspection, for designs
 - ▷ Inspector active vs. passive
 - ▷ Author prepares questionnaires
 - ▷ More than one meeting
 - Scenario based (questionnaires)
 - Overall ADR divided into small ones
 - ▷ 2-4 persons (for each smaller ADR)
- Inspection for program correctness
 - ▷ Correctness (vs. questionnaire) of:
 - topology (decomposition, hierarchy)
 - algebra (equivalence of refinements)
 - invariance (variable relations)
 - robustness (error handling)
 - ▷ Close to formal verification

Extending Inspection: Analysis

- Inspection as analysis
 - Program/document/etc. analysis
 - Inspection as statics analysis
 - Testing as dynamic analysis
- Other analyses
 - Static: algorithm, decision table, boundary value, control flow, data flow, etc.
 - Dynamic: symbolic execution, simulation, prototyping, timing, in-field execution, etc.
 - Covered in SQE (various chapters),
 with pointers in Section 14.3.5.
 - Detailed reference: Wallace et al 1996 (NIST Special Publication 500-234) available online

Defect Detection Techniques

- Ad-hoc vs. systematic ones below: checklist-/scenario-/abstraction-based.
- Checklist-based inspection:
 - ▷ Similar to testing checklists (Ch.8).
 - ▷ Basic types: artifact-/property-based.
- Scenario-based inspection:
 - ▷ Similar to usage-based testing.
 - ▷ Scenarios ties multiple components.
 - ▷ More a usage/external view.
 - ▷ Suitable for OOS.
- Abstraction-based inspection: Similar to code reading with stepwise abstraction.

Implementation and Effectiveness

- Implementation support:
 - Process and communication support
 - Repository management tools
 - Defect tracking and analysis as followup
 - Still human intensive
- Effectiveness studies
 - ▷ Measurement: defect or effort
 - Defect detection technique important
 - Inspector skills/expertise also important
 - ▷ Other factors, less than unanimous
 - Many individual variations

Summary

- Key advantages:
 - ▷ Wide applicability and early availability
 - Complementary to testing/other QA
 - Many techniques/process to follow/adapt
 - Effective under many circumstances
- Key limitations:
 - ▷ Human intensive
 - Dynamic/complex problems and interactions: Hard to track/analyze.
 - \triangleright Hard to automate.
- Comparison to other QA: Chapter 17.