
Software Quality Engineering Slide (Ch.12) 1

Software Quality Engineering:

Testing, Quality Assurance, and

Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu
www.engr.smu.edu/∼tian/SQEbook

Chapter 12. Testing Techniques:

Adaptation, Specialization, and

Integration

• Adaptation to Test Sub-phases

• Specialized Testing Techniques

• Integration and Web Testing Case Study

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.12) 2

Applications of Testing Techniques

• Major testing techniques covered so far:

. Ad hoc (non-systematic) testing.

. Checklist-based testing.

. Partition-based coverage testing.

. Musa’s OP for UBST.

. Boundary testing (BT).

. FSM-based coverage testing.

. Markov chains and UMMs for UBST.

. Control flow testing (CFT).

. Data flow testing (DFT).

• Application and adaptation issues:

. For different purposes/goals.

. In different environments/sub-phases.

. Existing techniques: select/adapt.

. May need new or specialized techniques.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.12) 3

Testing Sub-Phases

• Annotated V-model for testing sub-phases:

Fig 12.1 (p.204)

• Original sub-phases in V-model:

. Operational use (not testing, strictly).

. System test for product specification.

. Integration test for high-level design.

. Component test for low-level design.

. Unit test for program code.

• Additional sub-phases/specialized testing:

. Diagnosis test through all sub-phases.

. Beta test for limited product release.

. Acceptance test for product release.

. Regression test for legacy products.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.12) 4

Unit Testing

• Key characteristics:

. Object: unit (implemented code)

– function/procedure/subroutine in

C, FORTRAN, etc.

– method in OO languages

. Implementation detail ⇒ WBT.

(BBT could be used, but less often.)

. Exit: coverage (reliability undefined).

• Commonly used testing techniques:

. Ad hoc testing.

. Informal debugging.

. Input domain partition testing and BT.

. CFT and DFT.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.12) 5

Component Testing

• Key characteristics:

. Object: component (⊃ unit), 2 types.

. I. collection of units in C/FORTRAN/etc.

– implementation detail ⇒ WBT.

. II. class in OO languages

– reusable component ⇒ BBT.

. Exit: coverage (sometimes reliability).

• Commonly used testing techniques:

. for traditional systems (component I)

≈ unit testing, but at larger scale

. for OOS/COTS/CBSE (component II)

≈ system testing, but at smaller scale

– see system testing techniques later

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.12) 6

Integration Testing

• Key characteristics:

. Object: interface and interaction among

multiple components or subsystems.

. Component as a black-box (assumed).

. System as a white-box (focus).

. Exit: coverage (sometimes reliability).

• Commonly used testing techniques:

. FSM-based coverage testing.

. Other techniques may also be used.

. Sometimes treated as ⊂ system testing

⇒ see system testing techniques below.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.12) 7

System Testing

• Key characteristics:

. Object: whole system and the overall

operations, typically from a customer’s

perspective.

. No implementation detail ⇒ BBT.

. Customer perspective ⇒ UBST.

. Exit: reliability (sometimes coverage).

• Commonly used testing techniques:

. UBST with Musa or Markov OPs.

. High-level functional checklists.

. High-level FSM, possibly CFT & DFT.

. Special case: as part of a “super”-system

in embedded environment

⇒ test interaction with environment.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.12) 8

Acceptance Testing

• Key characteristics:

. Object: whole system.

– but defect fixing no longer allowed.

. Customer acceptance in the market.

. Exit: reliability.

• Commonly used testing techniques:

. Repeated random sampling without

defect fixing.

(≈ assumption for IDRMs, Ch.22.)

. UBST with Musa or Markov OPs.

. External testing services/organizations

may be used for system “certification”.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.12) 9

Beta Testing

• Key characteristics:

. Object: whole system

. Normal usage by customers.

. Exit: reliability.

• Commonly used testing techniques:

. Normal usage.

. Ad hoc testing by customers.

(trying out different functions/features)

. Diagnosis testing by testers/developers

to fix problems observed by customers.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.12) 10

Testing Sub-Phases: Summary

• Summary: Table 12.1 (p.209)

• Key characteristics for comparison:

. Object and perspectives.

. Exit criteria.

. Who is performing the test.

. Major types of specific techniques.

• “Who” question not covered earlier:

. Dual role of programmers as testers in

unit testing and component testing I.

. Customers as testers in beta testing.

. Professional testers in other sub-phases.

. Possible 3rd party (IV&V) to test reusable

components & system acceptance.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.12) 11

Specialized Testing

• Specialized testing tasks:

. Some do not fit into specific sub-phases.

. Different goals (other than reliability).

. Non-standard application environment.

• Our coverage:

. Defect diagnosis testing.

. Defect-based testing.

. Regression testing.

. Testing beyond programs.

. Testing for other goals/objectives.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.12) 12

Defect Diagnosis Testing

• Context of defect diagnosis testing:

. In followup to discovered problems by

customers or during testing.

. Pre-test: understand/recreate problems.

. Test result: faults located.

. Followup with fault removal and

re-run/re-test to confirm defect fixing.

• Defect diagnosis testing:

. Typically involve multiple related runs.

. Problem recreation as the starting point.

. Perturbation and observation.

. Domain knowledge important.

. More recorded defect information

⇒ less reliance on defect diagnosis.

. Defect-based techniques (below) useful.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.12) 13

Defect-Based Testing

• General idea and generic techniques:

. Focus: discovered or potential defects

(and related areas).

. Ad hoc testing based on defect guesses.

. Risk identification ⇒ risk-based testing.

(Part IV, esp. Ch.21)

. Defect injection and mutation testing.

• Defect injection and testing:

. Inject known defect (seed known fault).

. Test for both seeded and ingenuous faults.

. Missed faults ⇒ testing technique↑.

. Also used in reliability modeling.

• Mutation testing ≈ defect injection testing,

but systematic mutants used.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.12) 14

Regression Testing

• Context of regression testing:

. In software maintenance and support:

– ensure change 6⇒ negative impact.

. In legacy software systems:

– ensure quality of remaining functions,

– during development/product update,

– new part ≈ new development,

– focus: integration sub-phase & after.

. Re-test to verify defect fixing as well as

no unintended consequences.

• Regression testing techniques:

. Specialized analysis of change: ∆-analysis.

. Focused testing on (new) ∆-part.

. Integration of old and new.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.12) 15

Other Specialized Testing

• Testing beyond programs:

. Embedded and heterogeneous systems:

– test interactions with surroundings.

. Web testing, in case study later.

• Testing to achieve other goals:

. Performance testing;

. Stress testing;

. Usability testing, etc.

• Dynamic analysis and related techniques:

. Simulation to reduce overall cost.

. Prototyping, particularly in early phases.

. Timing and sequencing analysis.

. Event-tree analysis (ETA), Chapter 16.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.12) 16

Test Integration

• General idea:

. Many activities and tasks.

. Different techniques.

. Individual advantages and limitations.

. Much commonality exists.

. Possibility of integration?

• Test integration: Advantages

. combined strength ⇒ benefit↑.

. common elements ⇒ cost↓.

. flexibility↑.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.12) 17

Hierarchical Web Testing

• Case study from Chapter 10 continued:

. Web navigation modeled by FSMs.

. UBST using UMMs to overcome state

explosion problem of FSMs.

. Guiding existing web testing.

(they typically focus on a small unit/facet)

. Lack of structure for overall hits

⇒ use of simplified OPs (Musa OPs)

• Overall approach:

. Top-tier: flat (Musa) OP.

. Middle-tier: UMMs.

. Bottom-tier: existing web testing.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.12) 18

Existing Web Testing

• Web functionality testing:

. Focus on the web components identified

in Ch.10.

. HTML syntax checking via various tools.

. Link checking.

. Form testing.

. Verification of end-to-end transactions.

. Java and other program testing.

• Beyond web functionality testing:

. Load testing.

. Usability testing.

. Browse rendering.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.12) 19

Web Testing (from Ch.10)

• Testing web navigations:

. FSM-based testing in Chapter 10.

. Web crawling via robots.

• UMMs for web testing (Chapter 10).

. Availability/usage of web logs.

. Some observations:

– skewed top hit pages and x-references

– the impact of structural hierarchy

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.12) 20

Hierarchical Web Testing

• Overall approach:

. Top-tier: flat (Musa) OP

– for simplicity and skewed distribution.

. Middle-tier: UMMs

– importance of highly used navigations.

. Bottom-tier: existing web testing

– no need to re-invent wheels

• Implementation: Fig 12.2 (p.218)

. TAR (top access report) ⇒ top-tier

. CPR (call-pair report) to form clusters

⇒ middle tier UMMs.

. UMM refinement ⇒ bottom-tier.

Jeff Tian, Wiley-IEEE/CS 2005


