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Chapter 11. Control Flow, Data

Dependency, and Interaction Testing

• General Types of Interaction in Execution.

• Control Flow Testing (CFT)

• Data Dependency Analysis

• Data Flow Testing (DFT)
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Extending FSM for Testing

• FSMs and extensions:

. Difficulties with FSMs: state explosion

⇒ UBST with Markov-OPs/UMMs

. FSM Limitation: node/link traversal

⇒ other testing for complex interactions

• Interactions in program execution:

. Interaction along the execution paths:

– path: involving multiple elements/stages

– later execution affected by earlier stages

– tested via control flow testing (CFT)

– control flow graph (CFG) ∈ FSM

. Computational results affected too:

– data dependency through execution

– analysis: data dependency graph (DDG)

– tested via data flow testing (DFT)
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CFGs and FSMs

• CFG (control flow graph):

. Basis for control flow testing (CFT).

. CFG as specialized FSMs:

– type II: processing & I/O in nodes,

– links: “is-followed-by” relation, some

annotated with conditions.

• CFG elements as FSM elements:

. nodes = states = unit of processing.

. links = transitions = “is-followed-by”.

. link types: unconditional and conditional,

latter marked by branching conditions.
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CFG: Nodes and Links

• Inlink and outlink defined w.r.t a node.

• Entry/exit/processing nodes:

. Entry (source/initial) nodes.

. Exit (sink/final) nodes.

. Processing nodes.

• Branching & junction nodes & links:

. Branching/decision/condition nodes:

– multiple outlinks,

– each marked by a specific condition,

– only 1 outlink taken in execution.

. Junction nodes:

– opposite to branching nodes,

– but no need to mark these inlinks,

– only 1 inlink taken in execution.

. 2-way and N-way branching/junction.
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CFG Conventions and Examples

• CFGs for our CFT:

. Separate processing/branching/junction

nodes for clarity

. Sequential nodes: mostly processing

⇒ collapsing into one node (larger unit)

. No parallelism allow

(single point of control in all executions).

. Mostly single-entry/single-exit CFGs

. Focus: structured programs, ¬ GOTO.

– GOTOs ⇒ ad hoc testing.

• Example: Fig 11.1 (p.177)

. “Pi” for processing node “i”

. “Ji” for junction node “i”

. “Ci” for condition/branching node “i”

. Proper structured program.
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CFT Technique

• Test preparation:

. Build and verify the model (CFG)

. Test cases: CFG ⇒ path to follow

. Outcome checking:

what to expect and how to check it

• Other steps: Standard (Ch.7)

. Test planning & procedure preparation.

. Execution: normal/failure case handling.

. Analysis and Followup

• Some specific attention in standard steps:

Confirmation of outcome and route in

analysis and followup.
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CFT: Constructing CFG

• Sources for CFG:

. White box: design/code

– traditional white-box technique

. Black box: specification

– structure and relations in specs

• Program-derived (white-box) CFGs:

. Processing: assignment and calls

. Branch statements:

– binary: if-then-else, if-then

– multi-way: switch-case, cascading if’s.

. Loop statements (later)

. composition: concatenating/nesting.

. structured programming: no GOTOs

– hierarchical decomposition possible.

. explicit/implicit entry/exit

. Example: Fig 11.2 (p.179)
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Control Flow Graphs

• Specification-derived (black-box) CFGs:

. Node: “do” (enter, calculate, etc.)

. Branch: “goto/if/when/while/...”

. Loop: “repeat” (for all, until, etc.)

. Entry: usually implicit

. Exit: explicit and implicit

. External reference as process unit

. General sequence: “do”...(then)...“do”.

. Example: CFG in Fig 11.2

(from external specifications).

• Comparison to white-box CFGs:

. Implementation independent.

. Generally assume structured programs.

. Other info sources: user-related items

– usage-scenarios/traces/user-manuals,

– high-level req. and market analyses.
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CFT: Path Definition

• Test cases: CFG ⇒ path to follow

. Connecting CFG elements together in

paths.

. Define and select paths to cover

. Sensitize (decide input for) the paths

• Path related concepts/definitions:

. Path: entry to exit via n intermediate

links and nodes.

. Path segment or sub-path:

proper subset of a path.

. Loop: path or sub-path with 1+ nodes

visited 1+ times.

. Testing based on sub-path combinations.

. Loop testing: specialized techniques.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.11) 10

CFT: Path Selection

• Path selection (divide & conquer)

. Path segment definition

. Sequential concatenation

. Nesting of segments

. Unstructured construction: difficult

. Eliminate unachievable/dead paths

(contradictions and correlations)

• “Divide”: hierarchical decomposition for

structured programs.

• “Conquer”: Bottom-up path definition one

segment at a time via basic cases for nest-

ing and sequential concatenation.
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CFT: Path Selection

• Graph G made up of G1 and G2 subgraphs,

with M and N branches respectively

. Subgraph: 1 entry + 1 exit.

. Key decisions at entry points.

• Path segment composition:

. Sequential concatenation: G = G1 ◦ G2

– M ×N combined paths.

. Nesting: G = G1 (G2)

– M + N − 1 combined paths.

• Example paths based on Fig 11.1 (p.177)
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CFT: Sensitization

• Path sensitization/realization

. Logic: constant predicates.

. Algebraic: variable predicates.

. Use simple, obvious test cases

. Rely on good application knowledge

– run through first

– add other cases later

. Obtain input values (test point)

– select for non-unique solutions

. Alternative solutions via DFT later.

• Trouble sensitize ⇒ check others first.

. Unachievable?

. Model/specification bugs?

. Nothing above ⇒ failure.
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CFT: Logic Sensitization

• Segment and combination

. Divide into segments (entry-exit).

. Examine predicate relations.

. Uncorrelated: direct combination.

. Correlated: path elimination first,

then combination.

• Path elimination:

. Highly correlated:

– identical: direct merge

– contradictory

– logic implications

. Repeat above steps

Jeff Tian, Wiley-IEEE/CS 2005
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CFT: Algebraic Sensitization

• Complexity due to dynamic values

. Symbolic execution

. Replace conditions in predicates

(sensitive to prior path segments?)

. Then similar to logic sensitization

. More complex than logical sensitization

• Segment and combination

. Divide into segments (same)

. Examine variable relation in predicates

. Uncorrelated: combination (same)

. Correlated:

path elimination then combination using

replaced values via symbolic execution

Jeff Tian, Wiley-IEEE/CS 2005
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CFT: Other Steps

• Similar to Chapter 7.

• Execution and followup:

. Path/statement-oriented execution

– debugger and other tools helpful

. Followup: coverage and analysis

• Outcome prediction and confirmation:

. Test oracle or outcome prediction:

– may use path-specific properties.

. Path confirmation/verification.

. Guard against coincidental correctness.

. Instrumentation may be necessary.

. Automation: dynamic execution path and

related tracing.

Jeff Tian, Wiley-IEEE/CS 2005
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Loops: What and Why

• Loop: What is it?

. Repetitive or iterative process.

. Graph: a path with one or more nodes

visited more than once.

. Appear in many testing models.

. Recursion.

• Why is it important?

. Intrinsic complexity:

– coverage: how much?

– effectiveness concerns (above)

. Practical evidence: loop defects

. Usage in other testing.

Jeff Tian, Wiley-IEEE/CS 2005
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Loop Specification

• Deterministic vs. nondeterministic.

• Individual loops:

. Loop control:

node, predicate, and control variable.

. Loop entry/exit.

. Processing and looping:

pre-test, post-test, mixed-test.

. Example: Fig 11.3 (p.183)

– commonly used “while” and “for” loops.

• Combining loops:

structured (nesting & concat.)

vs. non-structured (goto).

Jeff Tian, Wiley-IEEE/CS 2005
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Loop Testing

• Path coverage:

. All: infeasible for nested loops:

M−1∑

i=0

N i =
NM − 1

N − 1
,

. Works for i iterations

⇒ i+1 iterations most likely fine too.

. Important: how to select?

– heuristics and concrete measures

– boundary related problems more likely

• Hierarchical modeling/testing:

. Test loop in isolation first.

. Collapse loop as a single node in higher

level models.

≈ Other hierarchical testing techniques.

Jeff Tian, Wiley-IEEE/CS 2005
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Critical Values for Loop Testing

• General boundary problems:

. Under/over defined problems and

closure problems.

. Boundary shift, ±1 problem.

. Similar to boundary testing (Ch.9).

• Lower bound problems:

. Initialization problem.

. Loop execution problem.

. Other boundary problems.

• Lower bound test values:

. Bypass, once, twice.

. Min, min + 1, min − 1.

Jeff Tian, Wiley-IEEE/CS 2005
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Critical Values for Loop Testing

• Upper bound problems:

. Primarily ±1 problem

. Capacity problem

. Other boundary problems

• Upper bound test values:

. Max, max + 1, max – 1;

. Practicality: avoid max combinations;

. Testability: adjustable max.

. Related: capacity/stress testing

Jeff Tian, Wiley-IEEE/CS 2005
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Critical Values for Loop Testing

• Other critical values:

. Typical number (≈ usage-based testing);

. Implicit looping assumptions in

hierarchical models

• Generic test cases:

. Lower bound: alway exists

⇒ related critical values.

. Upper bound: not always exists

– if so ⇒ related critical values,

– if not ⇒ related capacity testing.

. Other critical values.

. Level of details to cover in hierarchical

modeling/testing.

Jeff Tian, Wiley-IEEE/CS 2005
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CFT Usage

• As white box testing (more often):

. Small programs during unit testing.

. Coarse-grain system level model.

• As black box testing (less often):

. Model built on specification

– higher level constraints as specs.

. Overall coverage of functionality.

. Can be used for UBST.

• Application environment:

. Control flow errors (& decision errors).

. In combination with other techniques.

Jeff Tian, Wiley-IEEE/CS 2005
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CFT: Other Issues

• Limit control flow complexity

. Proper granularity

. Hierarchical modeling ideas:

– external units/internal blocks

. Combination with other strategies:

– CFT for frequently-used/critical parts

. Language/programming methodology

. Complexity measurement as guidelines

• Need automated support:

. Models from specifications/programs

. Sensitization support — debugging

. Path verification — tracing

Jeff Tian, Wiley-IEEE/CS 2005
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Dependency vs. Sequencing

• Sequencing:

. Represented in CFT “is-followed-by”

. Implicit: sequential statements

. Explicit: control statements & calls

. Apparent dependency:

– order of execution (sequential machine)

– but must follow that order?

• Dependency relations:

. Correct computational result?

. Correct sequence: dependencies

. Synchronization

. Must obey: essential

– captured by data flow/dependency

. PL/system imposed: accidental

– CFT, including loop testing

Jeff Tian, Wiley-IEEE/CS 2005
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Dependency Relations

• Convenient but not essential

. stmts not involving common variables

. some data relations (later in DFT)

. intermediate variables

• Nonessential iteration/loops:

. most deterministic loops;

. due to language/system limitations;

. example: sum over an array.

• Essential dependency:

. data in computation must be defined.

. essential loops: most nondeterministic.

. result depends on latest values.

Jeff Tian, Wiley-IEEE/CS 2005
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Need for DFT

• Need other alternatives to CFT:

. CFT tests sequencing

– either implemented or perceived

. Dependency 6= sequencing

. Other technique to test dependency

• Data flow testing (DFT)

. Data dependencies in computation

. Different models/representations

(traditionally/often as augmented CFT)

. DFT is not untouched data items within

a program/module/etc.

. “data flow” may referred to information

passed along from one component to

another, which is different from DFT

. Key: dependency (not flow)?

Jeff Tian, Wiley-IEEE/CS 2005
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DFT: Data Operations

• Types of data operation/references

. Definition (write) and use (read).

. Define: create, initialize, assign

(may also include side effect).

. Use: computational and predicate

(referred to as C-use or P-use).

• Characteristics of data operations:

. U: nothing change to original, but

– P-use affects execution path,

– C-use affects computational result.

. D: new (lasting) value.

. Focus on D and related U.

Jeff Tian, Wiley-IEEE/CS 2005
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Data Flow or Data Dependencies

• Pairwise relations between data operations:

. U-U: no effect or dependency

– therefore ignore

. D-U: normal usage case

– normal DFT

. D-D: overloading/masking

– no U in between ⇒ problems/defects?

(racing conditions, inefficiency, etc.)

– implicit U: D-U, U-D

expand for conditionals/loops

. U-D: anti-usage

– substitute/ignore if sequential

– convert to other cases in loops

• Data dependency analysis may detect some

problems above immediately.

• DFT focuses on testing D-U relations.

Jeff Tian, Wiley-IEEE/CS 2005
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DDG and DFT

• Data dependency graphs (DDGs):

Computation result(s) expressed in terms

of input variables and constants via inter-

mediate nodes and links.

• DFT central steps (test preparation):

. Build and verify DDGs.

. Define and select data slices to cover.

(Slice: all used to define a data item.)

. Sensitize data slices.

. Plan for result checking.

• Other steps in DFT can follow standard

testing steps for planning and preparation,

execution, analysis and followup.

Jeff Tian, Wiley-IEEE/CS 2005
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DDG Elements

• Nodes in DDG:

. Represent definitions of data items:

– typically variables and constants,

– also functional/structural components

e.g., file/record/grouped-data/etc.

. Input/output/storage/processing nodes.

• Relations and data definitions:

. Relation: is-used-by (D-U relation)

. Unconditional definition in example:

z ← x+y expressed in Fig 11.4 (p.188).

. Conditional definitions: data selector nodes

– parallel conditional assignment

– multi-valued data selector predicate

– match control and data inlink values

– example in Fig 11.5 (p.190)

Jeff Tian, Wiley-IEEE/CS 2005
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DDG Characteristics and Construction

• Characteristics of DDG:

. Multiple inlinks at most non-terminal nodes.

. Focus: output variable(s)

– usually one or just a few

. More input variables and constants.

. “Fan” shape common.

. Usually more complex than CFT

– usually contains more information

• Source of modeling:

. White box: design/code (traditionally).

. Black box: specification (new usage).

. Backward data resolution

(often used as construction procedure.)

Jeff Tian, Wiley-IEEE/CS 2005
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Building DDG

• Overall strategy:

. Backward chaining/resolution

. Computation flow:

– result backward

– implementation forward

. For DDGs based on specifications.

• Basic steps

. Identify output variable(s) (OV)

. Backward chaining to resolve OV:

– variables used in its computation

– identify D-U relations

– repeat above steps for other variables

– until all resolved as input/constants

. Handling conditional definitions in above.

. Example: Fig 11.6 (p.192)

Jeff Tian, Wiley-IEEE/CS 2005
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Building DDG via Code or CFG

• Alternative DDG construction strategy:

. Difficulty with previous strategy

⇒ build CFG first and then DDG.

. DDG construction based on code

(no need to build CFG first).

• Sequential D-U: y ← rhs

. y defined by the expression rhs

. no in a branching statement

. identify all variables xi’s and constants

ci’s in rhs.

. link xi’s and ci’s to y.

. if xi is not an input variable, it will be

resolved recursively.

Jeff Tian, Wiley-IEEE/CS 2005
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Building DDG via Code or CFG

• D-U in conditional Branches:

. blockI; if P then A else B

with different y definitions for A and B.

. Build sequential subgraph for each branch

– blockI; A, with output marked as y1,

– blockI; B, with output marked as y2.

. Build selector predicate subgraph for P

with context blockI; P

. Selector to select between A/B branch,

– y in the selector node,

– y1 and y2 as data inlink,

– P as control inlink,

– match control and data inlink values.

• N-way branch: Similar, but with N-way

selectors and corresponding labeling

Jeff Tian, Wiley-IEEE/CS 2005
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Building DDG

• Branching D-U – empty “else”:

. Special alert: still two choices

– one updated, one unchanged.

. Selector still needed

• Branching D-U – multiple OV:

. CFG subgraph for each OV

. Same control predicated used as inlinks

to multiple selectors

. Example: Fig 11.7 (p.194).

. Alternative: combined/compound OV

then treat the same as single OV.

Jeff Tian, Wiley-IEEE/CS 2005
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DFT and Loops

• Essential vs nonessential loops:

. Essential: mostly nondeterministic

. Nonessential iteration/loops:

– most deterministic loops

– due to language/system limitations;

– example: sum over an array

• Loop testing in DFT:

. Treat loop as a computational node

. Unfold/unwind once or twice

. Similar to one or two if’s

. Test basic data relation

but not all (loop) boundary values

Jeff Tian, Wiley-IEEE/CS 2005
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Sensitization in DFT

• Test one slice at a time:

. Test cases: (input-variable, value) pairs

to compute a slice.

. Combining (sub)slices.

. Focus on variables in tested slice only.

. Use default values for other variables

(still need in our sequential machines).

• Defining slices:

. Work on one OV at a time.

. No data selector involved ⇒ 1 slice.

. Single data selector:

– n slices for an n-way selector.

– example: Fig 11.8 (p.195)

. Multiple selectors: below.

Jeff Tian, Wiley-IEEE/CS 2005
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Sensitization in DFT

• Combine an M-way and an N-way selector.

• Slices with independent selectors:

. not in each others (sub)slice

(not used to define each other)

. M ×N combined slices

. example: Fig 11.9 (p.196)

≈ sequential concatenation in CFG.

• Slices with nested selectors:

. one selector nested inside another

. M + N − 1 combined slices

. example: Fig 11.10 (p.197)

≈ nesting in CFG.

Jeff Tian, Wiley-IEEE/CS 2005
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Sensitization in DFT

• Handling correlations/connections in DFT.

• Correlations/connections in unconditional

definitions:

. Nothing special need to be done.

. Computational results affected by the

shared variables and constants.

. Slice selections not affected.

• Correlations/connections in data selectors:

≈ correlated CFT conditions.

. Show up in selector control predicates.

. Correlations captured by shared variable

and constants in predicate sub-slices.

. Easily detected, and more easily handled

than in CFT.

Jeff Tian, Wiley-IEEE/CS 2005
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Other Activities in DFT

• Default/random value setting

. Not affecting the slice

. But may affect other executions

. DFT slices has better separation and

focus than CFT paths

. Automated support

• Outcome prediction:

only need relevant variables in the slice.

(simpler than CFT!)

• Path vs. slice verification:

(similar, but more powerful and more work,

so more need for automated support).

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.11) 41

DFT vs CFT

• Comparing with CFT:

. Independent models

. DFT closer to specification

(what result, not how to proceed)

. More complex, and more info.

⇒ limit data flow complexity

. Essential vs. accidental dependencies

. Loop handling limitations

• Combine CFT with DFT

. Use in hierarchical testing

. Nesting, inner CFT & outer DFT

. CFT for loops

(then collapse into a single node in DFT)

. Other combinations to focus on items

of concern

Jeff Tian, Wiley-IEEE/CS 2005
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DFT vs Others

• Relation to other testing techniques:

. Usage and importance of features:

⇒ similar to Markov OPs.

. Synchronization (example later)

in transaction flow testing (TFT).

. Compare to I/O relations in BT:

1 stage vs multiple/different stages.

• Beyond software testing:

. Data verification/inspection.

. Data flow machines as oracle?

. DDG in parallel programs/algorithms:

– help parallelize/speed-up tasks.

Jeff Tian, Wiley-IEEE/CS 2005
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DFT: Other Issues

• Applicability: (in addition to CFT)

. Synchronization.

. OO systems: abstraction hierarchies.

. Integration testing:

– communication/connections,

– call graphs.

• Need automated support:

. Graph models from (pseudo)programs

. Sensitization: default setting, etc.

. Path/slice verification

. Execution support

Jeff Tian, Wiley-IEEE/CS 2005
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DFT in Synchronization Testing

• Correct output produced:

. Input and expected output

. What we did already in DFT

• Synchronization of arrivals (timing):

. Input in different arriving orders

. Example with two way synchronization:

– nothing arrives ⇒ no output

– one arrives ⇒ no output

– two arrive (3 cases: A-B, B-A, AB)

⇒ correct token generated

. Combination with correct tokens

Jeff Tian, Wiley-IEEE/CS 2005
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DFT: Synchronization Testing

• Multi-way synchronization testing:

. similar: correct output and timing

. more cases: combinatorial explosion

. solution: simplify via stages

• Multi-stage synchronization:

. solves combinatorial explosion problem

. input grouping possibilities

. in-group synchronization and then cross-

group synchronization

. example: 4-way synchronization

. shares idea of hierarchical testing

Jeff Tian, Wiley-IEEE/CS 2005


