
Software Quality Engineering Slide (Ch.8) 1

Software Quality Engineering:

Testing, Quality Assurance, and

Quantifiable Improvement

Jeff Tian, tian@engr.smu.edu
www.engr.smu.edu/∼tian/SQEbook

Chapter 8. Coverage and Usage Testing

Based on Checklists and Partitions

• Checklist-Based Testing

• Partitions and Partition Testing

• Usage-Based Testing with Musa’s OPs

• OP Development: Procedures/Examples

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 2

Checklists for Testing

• Ad hoc testing:

. “run-and-observe”

. How to start the run?

. Areas/focuses of “observations”?

. Implicit checklists may be involved.

• Explicit checklists:

. Function/features (external)

. Implementation (internal)

. Standards, etc.

. Mixed or combined checklists

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 3

Checklists for Testing

• Function/feature (external) checklists:

. Black-box in nature

. List of major functions expected

. Example: Table 8.1 (p.105)

• Implementation (internal) checklists:

. White-box in nature

. At different levels of abstraction

– e.g., lists of modules/components/etc.

• Related: cross-cutting features/structures:

. Multiple elements involved.

. Examples: call-pairs, diff. parts that

cooperate/collaborate/communicate/etc.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 4

Checklists for Testing

• Other checklists:

. Related to certain properties

– e.g., coding standards,

. Combining (esp. for large products):

– hierarchical list, e.g., refined Table 8.1

– “X”-like, e.g., Table 8.2 (p.106)

• Possible drawbacks:

. Coverage: need to fill “hole”.

. Duplication: need to improve efficiency.

. Complex interactions not modeled.

. Solutions: Partitions and FSMs.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 5

Checklists to Partitions

• Partitions: a special type of checklists

. Mutually exclusive ⇒ no overlaps.

. Collectively exhaustive ⇒ coverage.

. Address two problems of checklists.

(Third addressed by FSMs in Ch.10.)

• Motivational examples:

. Solution to: ax2 + bx + c = 0,

r =
−b ±

√

b2 − 4ac

2a
.

. Input: a, b, c; Output: r.

. 32 bits floating point numbers.

. Input combinations:

232 × 232 × 232 = 296

. Reduce to 3 partitions: Table 8.3 (p.108)

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 6

Partitions: Formal Definitions

• Partition of set S into subsets

G1, G2, . . . , Gn (Gi ∈ S):

. Gi’s are mutually exclusive:

∀i, j, i 6= j ⇒ Gi ∩ Gj = ∅

. Gi’s are collectively exhaustive:

n
⋃

i=1

Gi = S.

• Each Gi forms an equivalent class.

. Formal conditions sometimes possible:

– formally defined by relations (next).

. Often implicit by membership to Gi

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 7

Partitions: Formal Definitions

• Relation: An association of interest to some

observers among objects.

. R(A1, A2, . . . , An)

. Binary relations: R(A, B) or ARB.

most commonly used relations.

• Relational properties

. Transitivity: ARB ∧ BRC ⇒ ARC

e.g., “>” relation.

. Symmetry: ARB ∧ BRA

e.g., “is-neighbor-to” relation.

. Reflexivity: ARA

e.g., “=” relation.

• Equivalence relation:

All the above properties hold.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 8

Partition-Based Testing

• Basic idea:

. Sampling from partitioned subsets

. Coverage of partitions: uniform

. Testing based on related problems:

– usage-related problems (later)

– boundary problems (Ch.9)

• Different types of partitions and related

partition-based testing:

. Pure membership based partitions:

– e.g., components in a subsystems

– direct sampling, e.g., one component

from each subsystem for coverage

. Properties/relations used in definitions:

– direct predicates on logical variables

– vs. operations on numerical variables

. Combinations

. Testing for latter two: Next

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 9

Partition-Based Testing

• Testing predicates on logical variables:

. Logical variable P as input.

. Two partitions/test-case: P=T, P=F.

. P ∧ Q, with two partitions (outcomes).

. P ∧ Q = T , with P = T and Q = T .

. P ∧ Q = F , one test case selected from

three pairs: (P=T, Q=F);

(P=F, Q=T); (P=F, Q=F).

• Testing comparisons on numerical variables

and combinations:

. x > 0, many possible test cases.

. Combination similar to above, e.g.,

– (x > 0) ∧ (y < 100), select x, y values

individually;

– (x > 0) ∧ (x ≤ 100), select x value to

satisfy both conditions.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 10

Partition-Based Testing

• Testing multiple sets of partitions:

. Divide-and-conquer.

. Model as stages.

. Combination (cross-product) of the stages.

• Example with binary partitions P and Q:

Four combinations: TT, TF, FT, FF.

• General: an m-way partition followed by an

n-way partition: m × n combinations.

• Coordinated sensitization often needed,

similar to for (x > 0) ∧ (x ≤ 100) above.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 11

Partition-Based Testing

• Extensions to basic ideas:

. Sampling from partitioned subsets.

. Coverage of partitions: non-uniform?

. Testing based on related problems:

– usage-related problems?

– boundary problems?

• Usage-related problems:

. More use ⇒ failures more likely

. Usage information in testing

⇒ (Musa’s) operational profiles (OPs)

• Boundary problems:

Input domain boundary testing (Ch.9).

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 12

Usage-Based Testing

• Usage based statistical testing (UBST) to

ensure reliability.

• Reliability: Probability of failure-free oper-

ation for a specific time period or a given

set of input under a specific environment

. Reliability: customer view of quality

. Probability: statistical modeling

. Time/input/environment: OP

• OP: Operational Profile

. Quantitative characterization of the way

a (software) system will be used.

. Generate/execute test cases for UBST

. Realistic reliability assessment

. Development decisions/priorities

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 13

UBST: General Issues

• General steps:

. Information collection.

. OP construction.

. UBST under OP.

. Analysis (reliability!) and followup.

• Linkage to development process

. Construction: Requirement/specification,

and spill over to later phases.

. Usage: Testing techniques and SRE

• Procedures for OP construction necessary

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 14

OP: Basic Concepts

• Profile: Disjoint alternatives and their

associated probabilities.

. Key: flat and sum to 1.

. Occurrence or weighting factors.

. Representation: graphs and tables

– Table 8.4 (p.112) and Fig 8.1 (p.113).

. Different types of profiles.

. OP: operational profile.

. Often sorted in decreasing probabilities.

• General observations:

. Uneven distribution: basis for UBST

(otherwise uniform sampling adequate)

. #operations↑↑ ⇒ cutoff threshold.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 15

OP Usage

• Usage of OPs in UBST:

. Pure random sampling rare

– requires dynamic (on-the-fly) decisions

– might interfere with system functions

. More often: pre-prepared test cases

– “pseudo” randomness

. Other variations:

– normal cases and then perturbations

– use of adjustable thresholds

• OP and SRE (s/w reliability engineering):

. SRE assumes OP-based UBST.

. OP sometimes directly used in reliability

evaluations and improvement.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 16

UBST: Primary Benefit

• Primary benefit:

. Overall reliability management.

. Focus on high leverage parts

⇒ productivity and schedule gains:

– same effort on most-used parts

– reduced effort on lesser-used parts

– reduction of 56% system testing cost

– or 11.5% overall cost (Musa, 1993)

• Gains vs. savings situations

. Savings situation: AT&T (above)

– reliability goal within reach

– not to over test lesser-used parts

. Gains situation: more typical

– re-focusing testing effort

– constrained reliability maximization

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 17

UBST: Other Benefits

• Introducing new product

. Highly-used features quickly

. Lesser-used: subsequent releases

• Better communications/customer relations

. Customer perspective & involvement

⇒ closer ties to customers

. More precise requirement/specification

. Better training focus

• High return on investment:

. OP cost, “average” 1 staff-month

– 10 developers, 100KLOC, 18 months

– sub-linear increase for larger ones

. Cost-benefit ratio: 10

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 18

Developing OP

• One OP or multiple OPs?

. One OP for each homogeneous group

of users or operations:

– user group or market segmentation

– groups of operations (op. modes)

. Fundamental differences ⇒ split

. Hybrid strategy often useful:

– develop separate OPs

– merged OP for overall picture

– both types offer valuable info.

• Generic methods: Information sources.

. Actual measurement.

. Customer surveys.

. Expert opinion.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 19

Developing OP

• Actual measurement for OP construction:

. Most accurate but also most costly.

. Limitations for new products.

. Legal/IP issues.

• Overcoming difficulties for new products:

. Measurement for similar products.

. Necessary adjustment.

• Overcoming legal/IP difficulties:

. Similar to new product strategy above?

. Voluntary participation:

– “out” participation: beta testing,

– “in” participation: ECI in IBM

. Use of existing logs/records/etc.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 20

Developing OP

• Customer surveys:

. Less accurate/costly than measurement.

. But without the related difficulties.

. Key to statistical validity:

– large enough participation

– “right” individuals completing surveys

. More important to cross-validate

– see example study in Section 8.5.

• Expert opinion:

. Least accurate and least costly.

. Ready availability of internal experts.

. Use as a rough starting point.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 21

Developing OP

• Who should develop OP?

. System engineers

– requirement ⇒ specification

. High-level designers

– specification ⇒ product design

. Planning and marketing

– requirement gathering

. Test planners (testing)

– users of OP

. Customers (implicitly assumed)

– as the main information source

• Development procedure (2 variations)

. Top-down/Musa-1: (Musa, 1993)

. Musa-2: Musa 1998 book (Chapter 3)

. Both covered in SQE book.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 22

OP Development: Musa-1

• One OP for each homogeneous group of

users or operations.

• General idea:

. Top-down: user/usage groups.

. Focus: external users and their usage.

• Generic steps:

1. Find the customer profile.

2. Establish the user profile.

3. Define the system modes.

4. Determine the functional profile.

5. Determine the operational profile.

• First two steps external view; last three

steps internal view.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 23

Musa-1.1: Finding the Customer Profile

• Differentiate customer from users

. Customer: acquisition of software

. User: using software

• Weight assignment:

. By #customers

. By importance/marketing concerns, etc.

. Example: Table 8.5 (p.118)

• Split or merge?

. Fundamental differences: split.

. Else, use weighting factors to merge.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 24

Musa-1.2: Establishing the User Profile

• Breakdown of customer groups

. Different usages of user groups

. Merging similar users across customers

• Weighting factor assignment and compre-

hensive user profile derivation:

. User weights within customers:

– by users (equal usage intensity)

– by usage frequency

. Comprehensive: weighted sum

. Example: Table 8.6 (p.119)

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 25

Musa-1.3: Defining System Modes

• System mode

. A set of functions/operations

. For operational behavior analysis

. Practicality: expert for system mode

• Example modes

. Business use mode

. Personal use mode

. Attendant mode

. System administration mode

. Maintenance mode

. Probabilities (weighting factors)

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 26

Musa-1.4: Determining Functional Profile

• Identifying functions

. Function: high-level task/work of the

projected system in the requirement.

. Input domain partitions/combinations

. Hardware/OS/system configuration

. Base on environmental variables

• Creating/consolidating function list

. From system requirement

. From prototypes/previous release/user

manual etc.

• Determining occurrence probabilities

. Measurement and adjustment

. Functions ⇔ operations

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 27

Musa-1.5: Determining OP

• Refining functional profile into OP

• Defining operations

. Operation: implemented task/work that

can be used as part of system test plan

. Defining the input space

. Partitioning input space into operations

. Typically: 1 function ⇒ n operations

• Obtaining occurrence probabilities

. In-field measurement

. Estimation for new systems or added

functionalities using symbolic models or

prototypes

. Help from functional probabilities

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 28

OP Development: Musa-2

• One OP for each operational mode

(testing under specific modes in practice)

• General idea:

. Op. group: coarse → fine → individual.

. Focus: internal users (testers).

• Generic steps:

1. Identify initiators of operations.

2. Tabular or graphical representation.

3. Operations lists:

initiators → consolidated.

4. Determine the occurrence rate.

5. Determine the occurrence probability.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 29

OP Development: Musa-2

1. Identify initiators of operations

. Who are the users of the system?

human users, other hw/sw/network/etc.

. Consolidate across organizations or

customer types

2. Tabular vs graphical representation

. Tabular: operation-probability pairs.

. Graphical: stages/steps of operation

– operation = a path in graph/tree

– probability for branching

(joint prob = product of indiv. prob.)

. Example: Fig 8.2 (p.121)

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 30

OP Development: Musa-2

3. Operations lists:

. Initiators ⇒ indiv. op. lists

. Consolidation ⇒ overall op. lists

. Proper granularity adjustment:

– possible split/merge

4. Determine the occurrence rate

. Measurement (and survey?)

. Tabulation

5. Determine the occurrence probability

. Normalized occurrence rate

. 0 ≤ pi ≤ 1 and
∑

i pi = 1

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 31

Comparison: Musa-1 vs. Musa-2

• Generic steps:

. Musa-1: customer → user → sys. modes

→ functional → operational

. Musa-2: initiator → representation →

list → rate → probability

• Comparison

. Size/environment/population differences.

. One OP for each distinguished group

– Musa-1: user or operation group,

– Musa-2: operational modes.

. Musa-1: 5 profiles, refined along.

. Musa-2: different elements for 1 profile.

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 32

OP Construction: A Case Study

• Background:

. Former CSE 5314 student

. Course project: OP development

. Application of Musa-1

. Chruscielski/Tian: ISSRE’97 paper

(IEEE-ISSRE’97 best paper award)

• Problem and key decisions:

. Product: LMTAS/CSS

. Product characteristics ⇒ OP type

– menu selection/classification type

– flat instead of Markovian

. Result OP, validation, and application

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 33

OP Case Study

• Participants:

. Software Product Manager

. Test Engineers

. Systems Engineers

. Customers

. Chruscielski: pulling it together

. Tian: technical advising

. Chruscielski/Tian: documentation

• Information gathering

. Interview Software Product Manager

to identify target customers

. Customer survey/questionnaire

to obtain customer usage information

. Preparation, OP construction and

followup

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 34

OP Case Study

• Customer profile:

. US Air Force and other AFs

. Similar customers/usage ⇒ one OP

• User profile: Table 8.7 (p.123)

. User groups & marketing concerns.

. Profile reflects both.

. Idea applicable to other steps:

– profile can be importance weighted,

– trade-off impossible ⇒ dedicated OP.

• System modes

. No significant difference in op.

. Directly proceed to functional profile

. General: some step may be by-passed

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 35

OP Case Study

• Functional/operational profile:

. CSS: functions ≈ operations

. Flat structure/choices

. Implicit profile possible

. Functional list

. OPs: for both individual user groups

and comprehensive

• Analysis and followup

. Cross-validation: Peer review by

Software Product Manager, System

Engineers and Test Engineers

. Classification of usage frequencies

– Table 8.8 (p.134) found to be useful.

. Followup actions

Jeff Tian, Wiley-IEEE/CS 2005



Software Quality Engineering Slide (Ch.8) 36

Alternative Usage Models

• Motivation: enhance flat OP

. Complicated operations involve many

steps/stages in the end-to-end chain

. Ability to use existing models and

structural information

. Ability to use localized knowledge

. Local information easy to gather

• Markov OP: Basic ideas

. Markov chain for usage information

. State: operations/functions

. Transition: probabilistic

– reflects usage sequence/frequency

– history independent (Markovian)

– but reflects local usage info.

. Details in Chapter 10.

Jeff Tian, Wiley-IEEE/CS 2005


