THE ISO9126 FRAMEWORK

ISO9126 offers a framework for appraisal of software on the basis of several areas of performance, some of which are relevant to playability, some of which are much less so, none the less, all are relevant in some way to assuring the future of a particular MUD.

It seems, as a result, a good idea to follow ISO9126's recommended areas of investigation in this report to provide a solid grouding for the relevance of various areas. This does not, however, mean the focus of the report will change, nor does it mean that it will become more or less specific, only that there will be a greater emphasis on which factors fall in what areas of the software's usefulness.

The areas of investigation illustrated in ISO9126 are as follows, with the sub-areas which they cover.

· Functionality

· Suitability

· Accuracy

· Interoperability

· Compliance

· Security

· Reliability

· Maturity

· Recoverability

· Fault Tolerance

· Usability

· Learnability

· Understandability

· Operability

· Efficiency

· Time Behaviour

· Resource Behaviour

· Maintainability

· Stability

· Analysability

· Changeability

· Testability

· Portability

· Installability

· Conformance

· Replaceability

· Adaptability

In each case, there is an immediately obvious area of relevance, which applies to some area of a MUD's use and implementation;

Functionality, for example, all relates to implementation-oriented goals, and problems, although they do, in the long run, affect playability dramatically.

Reliability obviously has an instant effect on playability, as will be detailed later.

Usability, which is arguably the primary factor affecting playability, will be taken up in the bulk of this report, because, if not the primary factor, it is without a doubt the most obvious factor affecting playability.

Efficiency, again relates to goals of implementation, which are certainly necessary to avoid a MUD's swift ejection from the system on which it resides.

Maintainability, again, is a crucial factor affecting playability, because of its close ties with reliability.

And finally, perhaps the least important factor with respect to playability, although still relevant is Portability, which, should a MUD loose its site - because of a lack of efficiency - it will need to be portable to enable its, as it were, resurrection on another site, else it will be resigned to the electronic wastebasket.

With this in mind, it should be obvious to the reader that this report will do more than just scratch the surface of the problems, and enable both a good consolidation of where MUD technology is at now, and, using this as a basis, move on to make recommendations for its future.

REFERENCES

ISO9126 Specification Documentation.

FUNCTIONALITY

SUITABILITY

The suitability of a MUD is probably best described as the suitability of the MUD engine in question to the atmosphere of the MUD that is trying to be achieved. As such it is purely subjective in part, but in other ways, looking at the functions contained in a MUD's base code can be of a great deal of assistance(Indeed, I would hope that the partial function catalogue of CircleMUD presented at the end of this report will be of some assistance in doing so) simply because an implementor can imagine what they can 'do' with various functions.

However, there is one major factor aside from this which is of critical importance. That is, that no MUD engine is suitable for any application unless the implementor has experience with it. Certain sources suggest six months as a suitable amount of experience before attempting to actually start your own MUD using that base code.

ACCURACY

Accuracy in MUD's is a subject over which there is much heated debate, although to my mind it is not very relevant, since MUD's are fantasy based on the whole. However, if one mixes elements of fantasy with elements of reality, then there are a great many issues of relevance.

These issues are dealt with briefly later, but to summarise; the only way that one can obtain a view as to their own personal playability preferences with regard to accuracy is to play a number of MUD's.

In my view, accuracy in terms of real-life mapping on to MUD's should be used sparingly, as, after all, it's 'only a game'.

INTEROPERABILITY

The possibility of interoperability between MUD's is one that is appealing in certain ways, but in others much less so. For instance, for LP MUDs, there exists the InterMUD system, by which communication can occur between players on different MUD's. This system has been extended to work with the CircleMUD engine to name just one.

However, there is a system on certain talkers which allows a person to move into a room on one talker and become connected to another talker which holds that room. The idea of this happening on MUD's has been suggested by many, is awaited by all, but, as yet, implemented (to the best of my knowledge) by none. The reason that this is awaited by so many is that the enhanced playability offered by seamless movement between one MUD and another is very appealing. If you think along the lines of all of the D OOM 'WAD' file expansions that are on offer, and probably quadruple the playability value, that may be about what you should expect, simply because there is no interruption between changing 'WAD' files, and you can still interact with other players no mat ter which MUD you are in.

I believe that the main reason for this is that the idea of moving a whole player from one MUD to another presents trying problems. For example, there are two ways in which this can be achieved.

Firstly, a player could be transferred from one MUD to another by merely saving their player data on the first MUD, loading their playerfile for the second MUD into the appropriate room, and resuming play transparently from there.

This, however would result in inconsistencies, because a player might be at a different level on the two different MUD's, thus defeating the object of the transparency, and probably resulting in many deaths for that particular player. This would be a thr eat, I believe, rather than a bonus to playability.

Then, secondly, it would be possible, at the point of transfer to send the player's data from one MUD to another, and for the player to resume play in the appropriate room on the destination MUD. This, however, gives access to the player's data to another MUD, and also creates problems of probably usurping any banning that the destination MUD has in place.

Also, in this second scenario, the amount of exp, and difficulty of killing many characters is likely to be wildly different, resulting in the same problems of death and loss of playability as in the first scenario, or failing that, a glut of players on a ll but the MUD's in the 'network' that are easiest to gain experience points on, although those players would probably still connect through their normal MUD 'entry point', as it were in this scenario.

However, it should be fairly obvious that if there is close co-operation, and agreement on experience points, and relatively difficulty of mobiles between all such connected MUD's, then these problems would dissolve. For instance, upcoming groups of MUD' s such as 'The Godwars Network' would probably be able to implement such a system, should the implementation be possible.

COMPLIANCE

There are very few issues that are really relevant to the compliance of a MUD with various standards, as they tend to interact with little more than TCP/IP and the operating system on which the MUD server runs. However, on the client side, which this repo rt deals with only loosely, there are many more issues, which will not be covered.

As regards to the operating system, certainly under UNIX, there are a number of signals from the OS that a MUD should, for compliance's sake be able to deal with, as for such things under Windows, which is the other major OS that MUD's have been known to run on, I, alas, know not, as its POSIX compliance does not stretch to the level of compliant OS signals.

And regarding TCP/IP standards laid down in rfc's, and such documents. Put simply, a MUD would just not work at all if it didn't comply properly with TCP/IP standards.

Beyond this, there is obviously the issue of compliance with user's particular standards, but again, this means playability.

SECURITY

Although this is very much a passing issue, since what passes back and forth on a MUD is not required to be secure, and to make it secure using secure sockets would cause a catastrophic amount of load on the server machine (which would mean the MUD was ej ected from the server very quickly).

Although, there is one thing which must be kept secure on the MUD. That being the password of every user. Obviously more so for the MUD's admin. However, to use secure sockets for passing passwords from client to server would again generate much too much load on the server, and it is difficult, if not impossible to switch between secure and insecure sockets when secure passwords are being transferred.

The point, though, is that sometimes, MUD's are unable to obtain access to suitable encryption algorithms, and are left to store passwords in an unencrypted form(this can, under UNIX be because the include file for crypt has not been included, or the libr ary has not been loaded into the executable), because - I would hazard a guess, as I have seen this happen on a number of different MUD engines - of a macro which has been inherited from DikuMUD which does approximately the following;

 if NOCRYPT or NOT CIRCLE_CRYPT

 return PASSWORD

 else

 return CRYPT(PASSWORD)

 endif

Obviously, it is possible to set NOCRYPT with the CircleMUD version of this macro, but if CIRCLE_CRYPT is not defined, - which refers to the ability to encrypt passwords - even in the CircleMUD version, the passwords would not be encrypted. This is not s o much an obstacle with player files that are binary, but ASCII rentfiles (ie. human readable) will have a clearly visible password in them, thereby giving access to all of the MUD's characters to anyone who can see the files (and it is distinctly possibl e that someone will be able to and will wish to try). To fallback on unencrypted passwords is not a good thing, even to rot13, or some suitably derived encryption system would be a vast improvement on that, although the implementation of which is really too trivial to warrant inclusion in this report.

REFERENCES

InterMUD pages, http://www.imaginary.com/, Viewed 13/05/98

Windows NT Server 4 Unleashed
Jason Garms, et al.
Sams Publishing
ISBN 0-672-30933-5

CircleMUD Documentation, http://www.circlemud.org/, Viewed 10/04/98

RELIABILITY

MATURITY

As mentioned previously, players will shy away from unmodified MUD's, and little-modified MUD's to varying degrees, because of the 'been there, done that' factor, so the maturity of a MUD is a factor affecting the extent to which it can capture player's imaginations, which contributes a lot to playability, and general MUD success.

Beyond the fact that players will do this, there is the fact that maturity is a component of reliability, which relates to stability, which affects playability. Which says enough about its relevance. However, it is not enough to merely advance the number of skills and spells in a MUD; Any advances made must be balanced, original(so as to capture the imagination), debugged(so as to promote stability), and documented so that players know how to use them.

The precise personal aesthetics and definitions of playability of players are a delicate matter, which merely hacking out functions in a MUD cannot hope to satisfy. I will be returning to this topic later.

RECOVERABILITY

Aside from obvious nuances of recoverability, that a system must come up again if it's, as it were, knocked down. This can largely be handled by scripts (although they do have disadvantages, in that if they are trusted too much, they can wreak havoc if they don't quite function as expected, taking up all of a MUD's disk quota and causing further corruption through massive log files, and so on...), or modifying the MUD in such a way as to not require a restart script.

While the MUD is running, there could also be a certain amount of redundancy, which would enable recovery of aspects of the MUD should they fail. However, this has not yet, to my knowledge been implemented in any MUD, probably due to the extra load that redundancy would cause.

Beyond this, although not always due to it, is the recoverability of corrupted files, which, beyond small amounts of error checking and correction code in the MUD itself, must be done manually. This, of course, means that there must be something; some backup to be restored manually. Which relies on frequent backups, and backups, though essential, are all too frequently neglected.

FAULT TOLERANCE

As mentioned above, MUD's are not the most fault tolerant of things, however, with a little forethought, and diligence, a MUD can happily maintain and run itself without need for much fault tolerance in the first place, and without having faults.

That is, of course, taking as read that properly tested code is running, or that a good code-base is in place. CircleMUD's for example can stay running without error for weeks at a time(1). However, from bitter experience, MERC MUD's seem to crash at least once a day.

The key factor in this is the code base, and proper use of testing and debugging tools(2) to ensure stability in the first place, rather than letting problems reach this level. Obviously though, players will be neither impressed, or inclined to stay with a MUD which has both numerous faults, and an inability to deal with them correctly.

To place a slightly better scale on the fault tolerance of MUD's, there could be said to be four different levels of fault tolerance, should a fault occur. These being none, exiting gracefully, notification, and correction. None, of course being worse than a graceful exit, as it usually results in a dirty, and risky exit of the server program. Exiting gracefully, then, is above this in that the risks of unclean termination are lessened or removed. Notification being above this still, because it results in manual correction of the problem, and does not make the MUD process exit immediately, if at all. And finally, the highest level of fault tolerance, and the one which wherever possible should be implemented is correction, whereby the fault is corrected via some kind of programming voodoo, or educated guess.

Unfortunately, there are all too many examples of the lower levels of fault tolerance, and almost none of the higher levels, due to the same reasons stated for the lack of redundancy.

REFERENCES

1) CircleMUD Documentation, http://www.circlemud.org/ Viewed 12/05/98

2) GDB Manual Page.

Real Time Systems: Investigating Industrial Practice.
Wiley Books
Ian Pyle, et al.
ISBN 0-471-93553-0

Structured Design: Fundamentals of a Discipline of Computer Program and Systems Design.
Edward Yourdon & Larry L. Constantine.
Yourdon Press/Prentice Hall.
ISBN 0-13-854471-9

USABILITY

LEARNABILITY

Learnability in a MUD is a tricky thing, as, it being a multi-user environment, there are two main ways in which one can learn to use a MUD. By reading of help files, or by being taught by someone else(Although there is always the use of trial and error, however this does not really come into such debate as this. It is, as it were, the zero on the scale).

Obviously simple, and flexible command structures are much more easy to learn than complex ones. For example;

 get all from corpse

or even just;

 get all corpse

is much easier to grasp than "getallcorpse", or similar. The essence of a learnable MUD has to be in commands that are learnable, memorable, and supported well by help files. Alas, though, most MUD's fall severely behind in the area of help files.

Unfortunately, though, no implementor can really vouch for how helpful their players will be to newbies, but they can help to promote it, by creating social ties within the MUD world to provide support for newer players. This point is covered later.

UNDERSTANDABILITY

As mentioned above, intuitiveness of commands is the one thing that makes them learnable and understandable, and as such is the key to both. However, to distinguish the two, perhaps understandability lies more in how things are presented back to the user , rather than how the user must remember them. For instance, good formatting of help files, rather than their mere presence on the MUD could be called understandability rather than learnability.

Indeed, there is a problem in real life that stretches into MUD's as well which is a vast obstacle to understandability of MUD's... That of the language barrier, whether it be formed from vocabulary or from different tongues. This is discussed later.

OPERABILITY

One definition of playability goes along the lines of "playability is how easy something is to play", which is in essence, operability. You can understand it, you can learn it, but is it a pleasure to use? would you recommend it to your friends? to a MUD , these are the questions which define it's success... However, obtaining playability in a MUD is not a matter of do's and don'ts, it cannot be obtained through a 10-step guide, or a 'teach yourself playability in 10 days' book. Playability is a personal thing, and as such, the playability of your MUD should attempt to please as many people's idea of it as possible. There are a number of schools of thought on how to create such a generalised playability. Varying from being as realistic as possible, to being as surreal as possible, but they all rely on something compared to real life, rather than actual playability itself, while trying as best as possible to ignore real life. My personal preference for how a MUD should be organised - although it may not be strictly relevant -, is that a MUD should be organised in such a way as to provide a completely fantasy world in which a player can become emersed, which pretty much rules o ut use of any real-life locations in the game's world. However, it is up to the implementor(s) of a MUD to decide this. Even if they disagree with my personal preference, I would say just this. Base your MUD on a theme. It is that one simple sentence that will make or break your MUD. If it is not based on some fixed idea or other, then the atmosphere will become disjointed, and loose atmosphere, which is a threat to playability. My personal suggestion is that taking the principle of a MUD player having an 'avatar', i.e. a body in the MUD realm to play about with, and use it to the advantage of the MUD's playability, by adding a new, distinct personality to that avatar, while also taking fullest advantage of the features which make a MUD special. For instance, the multi-user aspect, the possibility of co-operation, the interaction(via concepts such as groups, clans, coteries), and so on... Also, there is the more commonly found aspect of playability in games, that of computer controlled characters being given some artificial intelligence, to varying degrees related to system's constraints, and playability issues. It is these aspects which the bulk of the report will be devoted to.

REFERENCES

CircleMUD Documentation, http://www.circlemud.org/, Viewed 12/05/98

EFFICIENCY

RESOURCE BEHAVIOUR

Resource behaviour is critical to both the player-side success and the implementation-side success of a MUD. By this I mean that if a MUD takes up too much of its server machine's resources, it will soon find itself ejected from that server, which is a c oncern of implementation. But there is also the concern of player-side success of a MUD which relates to this, though this is easy to see as a knock on effect of bad implementation. A badly implemented, and hence resource-hungry MUD will often be slow, or hang entirely for bizarre reasons, which is a definite threat to playability, this is rather obvious. However, most MUD engines are fairly good in this respect, with CircleMUD probably coming top of the list. Though, I would hesitantly point the finger at the MERC MUD code base for being the worst, although this may just be down to the specific examples b ased on it that I have personally experienced. There is little more to say, without getting too much into the 'guts' of a MUD, which would risk sending the reader into the lands of slumber. TIME BEHAVIOUR This is rather a difficult thing to grasp in the concept of MUD's, because time is something of an abstract notion in a MUD, in that hours become seconds, days become minutes, and similar things, which is difficult to deal with at the best of times while not playing a MUD. However, on the whole, as with resource behaviour, MUD code-based tend to be much the same, although they all tend to achieve their generally low resource consumption through time-limiting, i.e. they update everything about their data s tructures in one go, at a preset time, and enter a wait state the rest of the time. This is how they manage not to take up as much of a systems resources as they might seem to. However, this approach is very common, as almost every daemon that exists on a computer system uses similar methods. Beyond this, although MUD's are not, in an academic sense time-critical, to the player, in the sense of playability, time is a very critical factor. A MUD which 'lags' all the time is not going to promote that much playability, and, without a number of o ther things to lift it out of the mire that the lag creates, such a MUD is doomed to failure. For a discussion of one such 'lagging' bug in many MUD engines, see the appendix on the DNS lookup bug, and its resolution.

REFERENCES

CircleMUD v3 bpl 12 upgrade documentation.

MAINTAINABILITY

Maintainability is essential in a MUD, because it, like all predatory systems(and MUD's are definitely predatory when it comes to getting and keeping players) must evolve to survive. As it stands, an unmodified MUD has only a limited number of skills, sp ells, and indeed, surprises, which will soon wear out. Indeed, if experienced players see the signs of a completely unmodified MUD, which has not been greatly modified, they are liable to steer clear of it on the basis of 'been there, done that, bought th e video'. So, as such maintainability consists of maintaining stability, through debugging, and enhancing playability through additions. In this process, the amount of relative changeability, analysability and testability of the MUD are of great help. There are also a number of maintenance problems which do not quite fit under this framework, because they relate to subsystems, or other systems affecting the running of a MUD, and so they are dealt with later. Also, a maintenance (or maintainability) issue is the year 2000 problem. We are all aware of the Year 2000, and its related mad panic(1). However, this, in itself should provide no major problems for any MUD, unless the operating system that it runs on w ill fall over on Jan 1st 2000. Put simply, this is because a MUD's idea of time, in keeping with the rest of it, is an abstraction of reality, and scaled to be much faster, after all if one minute on a MUD were one minute in real-life, would anyone either , depending on their viewpoint - ever stop MUDding? or ever start MUDding? Although it is worth mention that this kind of casual attitude is not, when taking a holistic view, acceptable. It is known by many that Microsoft Windows and DOS are going to have problems in the year 2000 unless they have undergone the correct upgrades , and that UNIX machines will experience problems around the year 2048, so one cannot be so casual in a real situation. It is merely that it is outside the scope of this report to mention the issue fully. STABILITY This refers, in context, to actually keeping the MUD up and running without failure. The metrics of this are quite long winded, but as per usual, the MTBF(mean time between failures) should be maximised, and MTTR(mean time to repair)should be minimised, w hile the MTTF(Mean Time To Failure) should be maximised as well. Which, in plain English, means; The MUD shouldn't crash much, it should be back up as soon as possible. The former is relatively easy to achieve without human intervention, but the latter, unless there is an autobooting script, is difficult to achieve wi thout direct human intervention. However, even a clever script cannot hope to overcome some of the more fatal errors with the MUD. It may even make them worse by producing excessive amounts of system logs for these errors sometimes, and do so while the h uman element assumes all is well and good. To ensure that the MTBF and the MTTF are reduced, there are a number of so-called 'upper CASE' tools which can be used(although it is decidedly difficult to draw the line between lower CASE, upper CASE and maintenance tools at the best of times, and some will disagree with my classification). In order to ensure the resilience of the MUD engine to failure is at its greatest possible, simple things such as compiling with '-Wall', '-fpedantic', and such like (in the case of gcc & gdb, or similar for other c ompilers) on, and, most importantly NOT IGNORING the warnings it brings up, and use of profiling tools, and debuggers on pre-live versions of the MUD engine should be used at every opportunity. But, the more difficult maintenance aspect, that of MTTR relies on having a good group of people to support the MUD and repair problems as they arise, or, even better, to pre-empt, and prevent them. ANALYSABILITY This, it seems is tied up with the degree to which the system can be analysed to either ensure correct function, or to enable detection or correction of a problem which exists. This is aided in the MUD scenario by good logging, and support functions within the MUD to check up on player, world, object and such data. Also, perhaps the best ways to allow for a high degree of analysability are to enable profiling and debugging options at MUD compile-time. However, this entails a trade-off between efficiency and analysability, although in the long term there would seem t o be only benefits in that the MUD will be more stable. It is in the hands of the implementor of a given MUD, although my personal opinion would be to always enable debugging information, and to enable profiling should efficiency become a great problem f or the MUD in question. Beyond this, there is little to be said except to either pick a MUD engine which has appropriate logging for the situation, or to tailor the one you have to produce the correct logging information. CHANGEABILITY Changeability relates, again, to the amount of association between code modules, and as Yourdon and Constantine(2) state, functionally cohesive modules, that are data-coupled are the simplest to modify without risk of affecting the rest of a system. Yet again, as I have mentioned earlier, a reason for using the CircleMUD engine. Another important factor affecting the changeability of a MUD is its packaging, i.e. how it is divided into files, run-time sections, and so-on. Because if a module to be modified is split between two files, or if it is embedded deep in a massive C file, then it will be difficult to modify without causing other problems. My personal preference for packaging is to have relatively small C files, with headers for macros kept separately, but keeping all related functions together for ease of changeability. However, it is very much down to the individual to decide how best to keep their MUD code packaged, although it is best to ensure that it is done well, rather than to ignore the issue altogether. However, beyond this, it is a matter of metrics as to which MUD engines are most functionally cohesive, and least coupled, which, as such are omitted from this section. Although it does need to be said that it is far, far better to use standard means to achieve a solution to a problem than to use spec_procs and other such methods to obtain a result. The more clearly and cleanly a result can be achieved, the better. This is for reasons of clarity, analysability, further changeability, and testability. Sp aghetti code does no-one any good. Also worth mention is that reuse is very relevant to maintenance, as much so as it is to initial implementation, and hence it is covered in an appendix in some detail. TESTABILITY Testability is something which can only be quantified in itself by actually using the MUD and being able to 'see' discrete module's functions when playing, however, the ability to do this can also be expressed in terms of functional association, that is, the way in which functions are group together and connected within modules. Then, of course, if one were to test a MUD through a debugger, this would not be so much of an issue, but is still very important. A trace of function calls through a module which makes them like spaghetti is not an easy thing to debug under any circumst ances. Again, as with analysability, logging is important to discern what is going on, without having to delve as deep as a debugger. What would probably be a good heuristic for what to log and what not to log is that anything new should be heavily logged, and these log entries should be removed when the new code is proven as stable.

REFERENCES

1) Computer Personnel, 13-26th March, 1998. Year 2000. 2) Yourdon & Constantine, Fundamentals of a Discipline of Computer Program and Systems Design. Real-Time Systems - Investigating Industrial Practise. Ian Pyle, Peter Hruschka, Michhel Lissandre, Ken Jackson, 1994. Wiley Professional Computing; John Wiley & Sons.

PORTABILITY

ADAPTABILITY

The adaptability of CircleMUD is aided greatly by the amount of both in-code, and accompanying documentation, which almost every other MUD engine is drastically lacking in. Of course, though, even further into purely code-related areas, the code for CircleMUD, one cannot help but notice, is written for clarity, as well as functionality, and is, in most places a prime example of functional association(1). Indeed, to labour t his point just a little further, CircleMUD's modularity can allow adaptations and additions to it to be written in entirely different programming languages (i.e. other than C) under certain circumstances, because it relies on linking of object files - whi ch do not have to be in a particular language - to create the final mud-server executable. CONFORMANCE CircleMUD's conformance to existing MUD 'standards'(the quotes being because they are certainly not set in stone, rather expected behaviour) is certainly excellent, however, this tends to be the case with all other MUD engines. This, though, is of little relevance to anything. More interesting, though, is the impact of the fact that most MUD players are hardened Internet users before they start, and will have certain pre-conceived notions of how certain things should work. For i nstance, the complaints of NUTS compliant talkers when they use a MUD are quite understandable, used, as they are to commands that are all prefixed with a dot, and the irksome attempts of many users of the Monochrome BBS, and other similar systems, trying to end their notes on a MUD with that same dot. This is an area where numerous MUD's fall down. Details of solutions to this are given later. However, it does have to be said that too much conformance is a bad thing, because if your mud is just like every other MUD, then there is no point in playing it. Your MUD must be different. INSTALLABILITY To consider the meaning of Installability in the context of MUDs, there seems only one possible way to see it; the ease with which one can get a MUD of a given type up and running on a machine. Of course, the hardest step in doing this is to get the, as you might say if you were trying to do so, 'blasted thing to compile'. CircleMUD version 3 patchlevel 12 seems to currently lead the field in this, for the most part because it can compile without problems under most versions of Microsoft Windows, and UNIX, which covers almost every system that runs a MUD anywhere, and it ca n do so using only its standard 'configure' script. Also, a great many compilers on those particular systems are supported in the same way, and failing that, through the CircleMUD help mailing list; where it is fairly likely that someone else has tried t o install CircleMUD on the same system. This was one of my many reasons for chosing CircleMUD to base Dark Mist MUD on. REPLACEABILITY This is an even more curious question to ask of a MUD, but none the less one in the iso9126 framework. Its closest mapping would appear to be if you could replace the code-base of a MUD with another one, and keep the original data files. This is generall y not a factor in most people's decisions, but it is perhaps a worthy idea at times, as insane as some people may see it. For instance, those who are still -and there are some- using DikuMUD code, ie. the very first MUD(give or take a bit...). It would be worth considering in that case upgrading to the very latest version of CircleMUD, simply for all the new facilities. However, as with all systems, compatibility tends to be unidirectional; you couldn't make a CircleMUD into a DikuMUD. It is indeed possible with the data files at least, with no modifications to read Diku world data files into a CircleMUD engine, although playerfiles are, as always, somewhat more difficult - the decision of Jeremy Elson, CircleMUD's some might say 'godfa ther', to use binary playerfiles, which are very, very system-dependant is quite ponderous. -. In this respect, CircleMUD is very supportive of the principle of replaceability, and the areas where it fails are offset by the areas in which it succeeds to b e replaceable, not to mention that those areas where it fails - where binary files are used -, can be overcome by using file conversion utilities, which are provided within the CircleMUD distribution. However, if there are numerous modifications to the code-base itself, then the p problems start to get more difficult. If special procedures are called a lot, they would have to be converted, if there were additions to the world data structures in the 'victim' MUD, then these would have to be mapped into the new CircleMUD 'host', so, as you will see, the idea looks less and less promising as the modifications to the original DikuMUD, or similar increase.

REFERENCES

1) Yourdon/Constantine, Fundamentals of a Discipline of Computer Program and Systems Design. CircleMUD documentation, http://www.circlemud.org/, Viewed 14/05/98

CONCLUDING ISO9126

So, as a result of areas highlighted by the ISO9126 framework for software evaluation, a wide variety of playability issues have been revealed. However, there is an inevitable element of implementation that should follow in any MUD. After all, it's all we ll and good knowing what playability is, but your MUD must show those properties to be successful. Hence we continue with examples of various -hopefully- playability enhancing feature implementations, the details of which follow, and the current version of the code of which can be obtained via ftp from Mudhole, the current site of Dark Mist MUD, the precise ftp address can be found at the end of this report. It is worth mention here that the Code for Dark Mist MUD is free for use on an emailware basis, i.e. I would like to have an email from all of the people who use any of it stating which parts, and what for. CLANS There is one thing that can be added to a MUD which capitalises on its strengths and promotes playability more than any other; the "group", and in a way which no other game allows to quite the same extent. This concept refers, quite self-explanatorily to a group of the MUD's players co-operating to defeat larger foes (MOB's), or more enemies in less time. This, though is only a loose, and very temporary allegiance, especially in playerkilling MUD's. In fac t, in playerkilling MUD's, the concept of the group is often abused to get more playerkills. There are two logical extensions to this concept; the idea of coteries(detailed later), and clans, which is the subject of this section. Clans are like groups, similar infact in most ways, but differ in several. Perhaps the main one being that clans are allegiances forged from survival, and suchlike, whereas groups are formed for purely killing (i.e. exp gathering) considerations. In most other ways, they are purely extensions to the group concept; - They have a leader (founder). - They have members; These, though, are often split into ranks. - They have entry conditions; Set by the founder. It is these extensions which provide the enhancement with clans, not to mention that clans, permanent as they are, can go to WAR. Which is fun... Sometimes... In moderation. They can also form allegiances between themselves, which almost gives the atmo sphere of the game a life of its own(Yet another emergent property!). Clans also give an underlying sense of status, or rather enhance that which exists already. In Dark Mist, "status points" are to be a key part of clans, - as it is my view that it should - but in other MUD's, things are different. [See the section on pla yer status] PLANNING Clans, in order to perform well with the minimum of implementor intervention(i.e. all possible in an automated way by players), implementation of clans within the MUD scenario must perform the following. - Limit the formation of clans. - Manage clan internal structure. - Work on-line, within the MUD. - Be failure resilient. - Manage player-defined constraints. - Allow intervention by implementors. - Provide adequate communication methods. [Both player and management side] - Fit relatively seamlessly within the constraints of the MUD user interface. - Limit required implementor intervention. "Limit The Formation Of Clans" This could be as simple as forcing an implementor to create a clan, or as complex as requiring a number of players together ready to form a clan. The former, though, conflicts with another objective(that of minimising required implementor intervention), a nd the latter is, from experience, hellishly difficult to implement). Also neither of which fit any visible storyline or game scenario. However, considering the formation of clans and suchlike throughout history gives us a simple, but effective idea. All clans have a leader; a respected and/or feared individual, who is renowned enough to be followed by a number of people, a person, as it were, of high status. This, conveniently enough ties in well with the idea of "status points" which are found on most playerkilling MUD's, which are awarded for every player killed by one particular player, and lost when that particular player is killed. So, from this it would seem sensible that only players of high status should be able to form clans, but how high status should remain a game balance decision, to be 'tweaked' as the initial prototype becomes the final version. Perhaps 5 though, would be a good starting point. "Manage Clan Internal Structure". Meaning that the integrity of the clan structure should be maintained, and not interfered with by other subsystems of the MUD. This also refers to the fact that there should be sufficient substance to the system; i.e. it shouldn't be "just another flag". It also refers to the fact that since clans do not change between times that the MUD restarts, the clan objects should be persistent ones until disbanded. "Work On-line, Within The MUD" In other words, all actions on a clan should be possible while actually playing the MUD, i.e. without an implementor having to directly edit any data files, or intervene at all. "Be Failure Resilient" If the MUD, or indeed the MUD server machine should crash, then the clan data should not be lost. This would almost certainly happen without some degree of writing to disk, as all data is usually stored in volatile memory. However, having copier of the c lan data on disk causes problems of integrity between the disk and memory versions of the file. However, consider the memory version of the data as a cache, and the disk versions as the stored version, and then it is more or less obvious that some kind of write-through cacheing system would solve such problems. "Manage Player-Defined Constraints" If a player "don't want no stinking vampires" in their clan, the system should be able to support this, where applicable, save it, force adherence to it, and allow it to be reversed when required. However, the player doing the defining should be limited, and the person able to do this would seem logically to be the clans founder. However, it is quite obvious that this degree of flexibility is not well defined, and as such will be something not to put into the initial prototype. Rather something that evolves as user/player requirements become clear. "Allow Intervention By Implementors" Simply speaking, there should be implementor overrides for all clan functions, and, if necessary, the possibility of off-line intervention. Again, this is not a critical factor for the initial prototype, rather one that can be added at a later stage, because the possibility of off-line file editing to remove clan problems always exists, and on-line control facilities for implementors are rath er more a luxury. "Provide Adequate Communication Methods" This speaks of both the 'method' within OOP by which an object -i.e. the clan object- is accessed and modified, but also the communication between clan members(i.e. clan communication channels within the MUD), and between clan heads and the game engine (i .e. the front end of the object methods). All of these should be provided within a clan update. However, once again, not all of these are critical factors. Obviously the methods associated with the actual clan object are definitely necessary, but the clan communication channel is just another luxury to be added later, and the user-interface will req uire a lot of preening and tweaking before it is right. "Fit within the constraints of the MUD interface" Currently, this mean being text-based, with a one-word command, and subsequent command arguments being compatible with existing parsing code. This also entails elements of prioritising clan commands, avoiding clashes with existing commands, as well as trying to make the resultant interface intuitive within the current MUD engine. "Limit Required Implementor Intervention" While MUDding is indeed fun, and interaction is good, implementors do have other things to do, lives to lead and such like. Hence any savings in then time they have to spend on-line taking care of the MUD is time that could be spent elsewhere. Hence this becomes a constraint, since more complexity entails more maintenance tasks, which takes more time, so any saving is a good saving in the long run. DESIGNING CLAN CODE The initial problem is what to make each clan object's attributes, to enable speed of processing, while minimising the usual database constraints(size, duplication/redundancy, etc.)
 Links: Since the clan structure is independent of all its other members, it should have links (via attributes) from clan members(this is NECESSARY for all members, including the founder to provide a link between the clan object and its members, the most sensible of which would see to be a clan id number in the player object/structure. However to do this with all players creates a redundancy because player->clan ID will be the same as clan->founder ID in the case of the founder, but this is just a small redundan cy. Also, it is necessary to have both a clan ID and a clan name in the structure to provide for on-line modification of a clan name without disrupting the internal structure too much. Now we come to the underlying internal structure of the clan database. In order to provide modification capabilities on-line, the list of clans needs to be able to expand and shrink freely. Shrinking is never a real problem, but expanding would cause seve re problems with reaching array boundaries if arrays were used - C, not C++ remember -. However, linked lists do not suffer from this problem, and hence seem an ideal method for underlying storage within memory. Considering file storage is a different matter, however. Here we only really have to choose between binary and ASCII data files, as any more detail is a) beyond the scope of planning, and b) far too picky even during the actual implementation. The choice equates to human readable files or non human readable files. The answer to which is simple. They must be human-readable so that they can be modified off-line. Then of course, there are the high-level methods for the clan class, which are formalised here(for the memory version of the data); Event Action (Clan) (Player) (Founder) --- Found Create - Modify Save Data - - - Rename Modify - - Set conditions Modify - - Induct player Modify(?) Modify - Outcast player - Modify - Promote Player - Modify - Disband Clan Delete Modify Modify Load Clan Data Modify - - As regards functions to implement this, Found, Induct, and Outcast represent an initial prototype of user-end functions, with load and save behind that front-end. Beyond this, the other functions can be implemented in a later time-segment. The structure of the induct and outcast functions should be something like this; BEGIN VALIDATE TARGET ELSE EXIT VALIDATE CLAN ELSE EXIT PERFORM ACTION ON TARGET'S CLAN ID. END And for induct or disband; BEGIN VALIDATE CLAN STATUS OF FOUNDER ELSE EXIT PERFORM ACTION ON CLAN DATA (CREATE CLAN, OR DISBAND CLAN) WRITE CLAN DATA INDICATE SUCCESS END Later additions to the initial prototype would include checking for clan conditions on the target, i.e. high enough level, etc. and the ability to modify these conditions, as well as ranks within clans. It would make sense to include all of the clan cond ition modifications into one front-end function, and checking clan conditions would be incorporated into the 'validate target' section of the induct command. Clan ranks would be implemented with just another flag similar to clan ID, but used to check for other clan commands.

REFERENCES

Object-Oriented Systems Design: An Integrated Approach. Edward Yourdon ISBN 0-13-176892-1 INTERFACE CONFORMANCE The modifications required to make a MUD's interface conform with that of other internet-based means of communication are usually very simple - a matter of a few lines here and there -, and yet lift an irksome load from the players of remembering, as it w ere 'how to type' on a different system. This can only help to enhance operability and learnability aspects of a MUD, which in turn enhance playability. For instance, a simple emulation of NUT's standards requires that all commands start with a dot, and other things do not, and default to being 'said'. However, a MUD would become annoyingly 'spammy' if everything a player typed was 'said' by that player's avatar in the MUD world. Not to mention that it would be inordinately diffic ult to learn what one should be typing to 'get' the command one wanted. Hence, it would be logical for a MUD to merely become compatible with that 'dot' syntax for commands. On Dark Mist, this takes the form of simply ignoring any leading dots, and treating the rest of a players input as a normal input string, thereby utilising existing error checking functions, and existing command parsers, and so on. Not perfect, but a very good example of conformance with an external standard to improve playability for a number of users. Then, for example, the Monochrome-style editing termination, again with a dot. On default CircleMUD, edits are terminated with a single character, '@' on a line. On the Monochrome BBS, and other similar systems, a '.' on a line does the same. It is hardl y a feat of coding to add another condition in the edit termination sequence for this. Then, of course, it need not really be documented, as it is obvious what the extra conditional does, and it will not affect new players, as they will learn the MUD way from the start. It will merely be a nice surprise for users of BBS's when it works, which they will appreciate, and perhaps come back to the MUD in question because of it.

REFERENCES

NUTS talker Homepage, Neil Ogham, Viewed 21/05/98 http://www.ogham.demon.co.uk/nuts.html Monochrome BBS help files, David Brownlee http://www.mono.org/ Viewed 10/05/98 THE DNS 'PROBLEM' Certainly CircleMUD, and some other MUD's - including Dark Mist, as yet - suffer from the fact that their MUD engine is unable to resolve IP addresses from IP packet headers into DNS fully-qualified domain names in a nonblocking fashion. The result being that, on MUD's which suffer from this problem, the game game 'freezes' while thi s blocking process occurs. This is obviously a threat to the usability of the MUD, not to mention its playability. Obviously there are solutions to this problem, of varying degrees of complexity, and acceptability. Of course we could do away with domain names altogether, or we could make players register an email address, and control their activities using that metho d of location, we could implement this DNS resolution as a separate process to the main MUD process, or we could implement it within the MUD in a nonblocking fashion. We could even get someone else to do it, and use a patch... One thing is for sure, this problem must be somehow solved. Whichever method of resolution is used in the end, there are a few things for certain; - The user interface must be intuitive and fit within the MUD. - The system should totally remove all 'lag' from domain name resolution. - The system should be simple to use, if any interaction with users is required. The implementation of a solution to this problem is very much beyond the scope of this report as its complexity would necessitate lengthy discussion on the topic, and very low level code-talk. Suffice it to say, that the final implementation would not be able to handle the complexity of cacheing issues, probably involve some kind of separate process, whether it uses the fork() call or similar or not would be an issue, shared memory would defini tely be a moot point. Also, while the DNS lookup code is being modified, it would be an excellent proactive risk management procedure to ensure that the code will be easily modifiable to handle the IP protocol version 6, by ensuring that the binding decisions of address sizes are not hard-coded, and can be changed easily. This could be achieved by using relative manipulation of the address via macros of ADDRESS_SIZE, NUM_ADDRESS_PARTS, and ADDRESS_PART_SIZE, from which the IP address can be converted to a string, because the address size is going to be the same as NUM_ADDRESS_PARTS, multiplied by ADDRESS_PART_SIZE, regardless of the address size. But to continue this much further is beyond the scope of this report.

REFERENCES

Software Engineering: A Practitioner's Approach, 4th Edition. Roger S. Pressman. McGraw Hill ISBN 0-07-706411-5 Structured Design: Fundamentals of a Discipline of Computer Program and Systems Design Edward Yourdon and Larry L. Constantine. Yourdon Press/Prentice-Hall. ISBN 0-13-854471-9 "We're running out of Internet" Vint Cerf Computer Weekly, 01/03/98 AI in MUD's As any games developer will tell you, AI is a very important part of a game, if not the most important part, which puts it into focus within this report, as a MUD is most definitely a game, despite all of its serious implications. All too often MUD's suffer from having computer controlled characters (NPC's), which are basically sitting ducks for any player characters to pick off at will. Sadly, the most commonly used "solution" to this problem is to merely increase the stats(i.e. t oughness, damage done, etc.) of any NPC's that seem to get "picked on", which has a knock on effect on the game balance of the MUD, and also just causing other NPC's to get "picked on", which does not create playability, but sadly tends to destroy it. This, of course, completely ignores the idea of giving the NPC's better AI to start with, for instance, making them will flee when they have been badly hurt, hide when they are being chased, and such like. And, of course, there are tales of the opposite extreme; MUD's with full or partial implementations of the Eliza "conversation engine". But these are unsubstantiated, and there is the MUD mobprog's system for Circle-based MUD's, by which NPC's can be prog rammed with behaviour in a relatively simple 4GL. However, within the MUD scenario we are rather unfortunately constrained in what we can do with AI, since a MUD that consumes vast amounts of systems' resources is unlikely to be able to stay on the system in question for very long, so expectations and id eas must be tempered by this. A resulting conclusion is quite easy to come to. That is; any AI implemented within a MUD must be simple, fast, and effective. For example simple quirks of character with drastic results, rather than large quirks which are purely cosmetic in result. To formalise, AI in MUD's must have both a small knowledge base and simple - if not binary - deduction machinery. But the results of the decisions taken by any AI engine should be sufficient enough to add character to the system. Obviously, any such AI 'quirks' added to a MUD will require fine tuning to make them fit in with overall game-balance, not to mention preventing them from becoming annoying, which, as anyone who has ever come into contact with it, Eliza is after a while. And, of course, these quirks must be carefully checked to ensure that they enhance, rather than detract from -that mythical quality- playability. Beyond this, however, there are -to my, admittedly quite limited knowledge- any MUD patches or implementations which have the ability to actually learn, or in any way accumulate knowledge once compiled and executed. This, however is by no means fixed, as, during a conversation with a colleague the following idea was stumbled upon. But first, consider this statement; "Knowledge bases typically contain definitions of all aspects relevant to some mini-world"(1) Consider the words 'mini-world'... A MUD is a mini-world, all inside a computer, so a knowledge base of an NPC in a MUD would consist of data already in the system, and events that occurred in that world. Now read on... Based on some role-playing concept or other, the conversation turned to how social occurrences might be engineered with in a MUD. In particular, how the concept of "I owe you one" could actually be implemented. Whereby, for instance, an NPC might 'forget' witnessing a killing within the MUD for certain 'favours'. From this, then, there arose the problem; "How would we decide who saw what?", and associated issues... - How would we implement it? - How would the data be stored? - How long would a character "remember"? - How do we ensure that the resource usage of this addition were acceptable? - What should the scope of the knowledge base be? And so to the planning...

REFERENCES

1) Wolfgang Kreuzer & Bruce McKenzie, Programming for Artificial Intelligence; Methods, Tools and Applications. Addison-Wesley, 1994. IMPLEMENTING FURTHER AI. Included here is information pertaining to the 'NPC memory' scenario, and to other 'quirks' implemented in Dark Mist MUD and others. But first, an introduction to a concept which aids greatly implementation of such 'quirks'. The concept of the special procedure (spec_proc for short). A procedure within the MUD code that is triggered on certain actions, or commands occurring in the vac inity of an Object, NPC, or even a room. These procedures can include any C constructs at all, as they are written into the base code of the MUD itself, but called only on special conditions. Procedures such as these allow exceptions to normal MUD behaviour, just as quirks of AI are exceptions to the rule. Bribery Certain NPC's in Dark Mist MUD are susceptible to bribes, upon receipt of which they may well shirk their duties, i.e. let you into a building, sell you something that they shouldn't sell you, etc. A simple quirk, but a drastic, although not that drastic effect on the MUD's nature, and implemented by slight modifications in the existing AI for guild guards, which was previously just 'your name's not down, you're not coming in!'. Aggression towards Undead In keeping with the game's atmosphere, an initial prototype version (which has yet to be finalised) was put in place that made certain NPC's attack all visible undead (ie. vampires showing their fangs, and suchlike). Again a simple, but effective quirk, w hich keeps players on their guard, and provides an engrossing factor in Dark Mist. Later modified to allow for weaker NPC's not to do this if it would cause almost certain death... The NPC 'memory' Scenario This is, to an extent, already implemented in Circle MUD at least, if not other code-bases. However, its scope only usually stretches to the last person who attacked any given NPC, although occasionally NPC's are sympathetic to other NPC's of the same, as it were 'species'. In itself, it is good AI, but it does not fit into MUD's very well, because all NPC's of the same 'species', as is the closest approximation I can think of, look exactly the same, so it is difficult, if not impossible to discern preci sely which NPC's a player attacked, and which ones will seek revenge, which is, of course, annoying, and liable to put off players. However, this is not a total loss, as it does suggest a key point. That events seen or felt by an NPC should be stored with the rest of that NPC's data, rather than one set of data for each 'species' of NPC, or indeed just all NPC's, which seems like a go od starting point.

REFERENCES

CircleMUD Documentation, http://www.circlemud.org/, Viewed 12/05/98 THE CHANGING FACE OF MUD's There is argument that the core technology of MUD's, that of "scrolly text" user-interfaces is outdated, and unsophisticated. This argument, though technically correct is false in a number of fundamental ways; - MUD's are the most popular internet game (PROOF!) - Almost all internet activity is text-based. (The WWW is, in a functional sense, only a tiny part of the Internet) - MUD's are often chosen by many over games such as DOOM. So, this collection of facts leaves a ponderous dilemma. However, none of them are the critical factor. What I believe the critical factor is lies in the reason why MUD's are so popular; the ATMOSPHERE. A MUD, like it or not, is attractive in that it offe rs an IRC-like casual, free atmosphere, but with the addition of a tangible playable element, which is attractive to users and sometimes borders on addictive. This atmosphere is quite distinct from the more high-tech competition in the games genre. This is because the rest of the games genre either reduces to 'strategy', or 'adrenaline' type games, where either sheer mental effort or adrenaline brought on by sp eed and such like are the main reason for their appeal. However, MUD's offer a combination of both of these, with elements of both strategy AND adrenaline (through combat and equipment amassing, etc.), and, on top of all of this, the social aspects of IR C, videoconferencing, groupware and the like. This said, there should be no more surprise in the idea that MUD's are so popular. However, to bring this back in to focus. The problem, in the light of the above is; How to "upgrade" a MUD without sacrificing this atmosphere? One cannot realistically hope to base a MUD around a totally 3D graphics oriented engine without drawing the inevitable DOOM comparisons, and affecting the atmosphere of the game, whether this be as a result of the game engine, or of the DOOM comparisons. Nor can one pretend that 2D or text-based top-down games are much more up to date than a MUD's existing engine. Then, beyond such subjective realms as those of atmosphere, playability, etc., what of the network and systems (both client and server) requirements? Firstly, if one were to consider a 3D environment... Well, to begin with, creating a MUD in 3D would require mapping of the existing heirachy of objects into 3D(i.e. rooms, players, NPC's, objects...), which in itself is complex enough; how to depict obje cts in 3D with appropriate detail? How to depict the peculiarities of each rooms' description in 3D? How to map room-based worlds into 3D? Doors into 3D? Full directional movement or restricted? and so on. The list of pitfalls is endless, and each of the aforementioned is most definitely a potential pitfall. There are also similar problems with a 2D environment. But again, this is without considering hardware constraints; merely the vast number of man-hours necessary for such an "upgrade". As far as a network is concerned, as little as possible data should be transmitted while playing due to the real-time constraints, and as little as possible server-side calculation should take place as possible, for the same reason. However, a client-side rendered 3D modelling language might make this possible, and as such possibly bears attention later. However, the solution which -as a MUD player, and implementor myself - stick in my mind as the most applicable is this; extension of existing MUD client software to include graphical user-interfaces, and use of embedded tags within the MUD server software , along with pre-requisite graphics libraries (in the sense of a collection of images/models). This, though comes after careful consideration of the following generalised scenario;
 i.e. An event occurs (user or server triggered), which necessitates a change, of graphics. The server specifies what to change and the graphical library is consulted, which may or may not draw on a graphics data store of some kind, following which, the gr aphical change is sent to the client, and from there, displayed. However, is it realistic to send image data over a network to depict real-time events? To which the answer is a definite no, because of the following. - A lot of MUD players do so via MODEM (rather than a super-fast ja.net or corporate connection) - The load on a MUD server would be far too much. But, there are, as always with anything even vaguely associated with multimedia, which a MUD is very much indeed in this context, methods of overcoming such problems; - Use of CODEC's. - Forcing users to upgrade hardware. - Removal/reduction of the time factor. Consider, then, if you will, a library of graphics stored at client-side during playing of a MUD; prior to that stored somewhere that all MUD users can access to download them. Then a method of checking these files against a 'required' list for a given MU D upon connection to that MUD (or upon choosing to use graphics), with the graphics subsequently being displayed upon receipt of a specified embedded tag by the client. This scenario would remove the need for real-time downloading, except that of transmitting triggers to display various images, which is not a problem as there are a wealth of standards (most notably the SGML standard) for embedding of mark-up tags into te xt, and from a network point of view, such tags would cause minimal extra network load; especially when one consider the 'rapid fire' nature of MUD's, in which the packet size of TCP/IP is almost never filled up by MUD I/O(1). This scenario, then, could be represented as follows.
 This solves the problem of real-time graphics transfer, yet provides a means of graphics display while using the MUD. Also, the above does not in any way state the nature of the graphics, merely that they must be presented at the client side upon request. This also provides for client-side customisation, should the user so wish, because the graphics display is virtually independent of the server side of the MUD. This separation/independency and, I hesitantly say API-level transparency is a central featur e of good distributed systems. Indeed, the authors of the ANSA Reference Manual(2) state that the defining characteristics of distributed systems are separation and transparency. However, there is also a problem with this, as was touched on earlier; not everyone will be equipped to show graphics. Indeed, not everyone will WANT graphics, so the graphics/GUI option must be on an opt-in basis. However, if not everyone will be using a graphical front-end, when can the local library be checked at the start without "spamming" the non-graphical users? The answer to this is simple; store a players preference of graphical/text MUD in their playerfile, and then, according to this setting, either verify, or do not verify the presence of the graphical library. So now we have a basic framework for a GUI MUD client-server setup...

REFERENCES

1) Jeremy Elson, CircleMUD v3.1 documentation (http://www.circlemud.org/) 2) ANSA Reference Manual, ANSA 1987. IMPLEMENTING A GRAPHICAL MUD There are a number of emergent technologies which would allow a graphical front-end enhancement to a MUD, some of which will be discussed here. Firstly, it would be possible to create a custom program using graphics standards such as PHIGS to access the GUI of a target system, and POSIX for the processing aspect of the client software, thereby enabling portability. This, though would require com pilation on each target system before use, which would add complexity to the process. However, one does not have to engineer a GUI for a MUD client from the ground up; there are a number of other ways to achieve this. One could take advantage of the Java Virtual Machine Structure to allow portability, or use OLE-based technology(1), although this would only work for Microsoft-based platforms, and last but by no mea ns least, one could utilise the object embedding features of HTML 3(2), which should allow any compliant web page to embed objects regardless of Microsoft-isms. I would personally favour a custom-written client-application written from the ground up, purely from a flexibility point of view. However, as I have said, this would be time consuming, and complex. It would, though, stand up to the reasoning that, excep t for java, the other standards are probably not mature enough to support such an application, with a telnet port, frequent graphical updates, text input and output, GUI processing, and so on. It is not really within the scope of this report to discuss much further, as a graphical front end does not affect core playability issues all that much, but to illustrate my idea of a graphical front end, see the mock-ups in the appendices.

REFERENCES

1) ActiveX Documentation, http://www.microsoft.com/, Viewed September 1997. 2) HTML 3 Specification, http://www.w3.org/, Viewed September 1997. JavaScript Developer, http://javascript.developer.com/, Viewed April 1998. PLAYER QUIRKS. AI in NPC's has already been discussed, but there are also a large number of issues pertaining to the way a MUD player's avatar interacts with the real player. In most cases, this keeps to quirks of the avatar, but not to full-blown AI. For instance, if a player's avatar were to actually get a cold, and were to act as such, while a player were on-line, this could lead to further playability. One such idea that struck me for Darkmist is that an avatar could have certain mental affliction s which the player would have to deal with, or, as is the plan, be amused by. It is obvious that creatures such as vampires, werewolves, and the like would have an affliction of frenzy, whereby they attack predators, and others. This can be seen in most undead-based MUD's (Vampire wars, God Wars, and such...), but to extend the poi nt to paranoia, stress, and so forth would, if nothing else be an interesting experiment, but would hopefully catch the player's imagination, and cause them to come back again... The implementation of this is rather simple, as there is a function already that updates given aspects of the MUD at given time intervals, and it would be a simple matter to add in clauses for each mental affliction in there, using some method of flagging . Probably bitvectors, as these allow multiple bits to be set at the same time. So, what would the initial prototype be in this case? Well, let us first consider the relevant dictionary definitions of various afflictions(1) Paranoia; "3. Informal. intense fear or suspicion, esp, when unfounded." Stress; "2. mental, emotional, or physical strain or tension." Frenzy; "1. violent mental derangement. 2. wild excitement or agitation; distraction." Manic; "1. characterizin, denoting, or affected by mania. 2. a person afflicted with mania." Where mania is defined as; "1. a mental disorder characterized by great excitement and occasionally violent behaviour." Each of these has, in these definitions a set of characteristics to base an initial prototype on, for example; Paranoia Quirks - 'Someone is looking at you' - 'Your wallet seems lighter' Sress Quirks - Inability to concentrate. And so on... This appears to be very little of an effect at the moment, but it is only an initial prototype, and there is much scope for improvement. It is also important not to overdo it, as it could have a detrimental effect on playability as a result. Beyond this, there must be some way to set or remove these afflictions from players, which is where the complexity lies. However, it would be simple enough to borrow code from elsewhere and reuse it, but setting other bitvectors, and grant use of it to im plementors only.

REFERENCES

1) Collins English Dictionary, Updated Edition. 1994/1995 IMPLEMENTING PLAYER QUIRKS Any quirk that a player's avatar is afflicted with will either effect the avatar in specific situations, or at certain, fairly regular intervals. In the case where it affects the avatar at specific times, or in specific situations, then the affliction cod e will have to be hard-coded into the modules which perform these functions, probably via function calls for clarity of code. Then, in the case of at regular intervals, well, thankfully CircleMUD - and probably most MUD engines - provides a mechanism for timing, (the heartbeat function) (1) and the same - or similar - affects code can be called from there. At those points, to prevent these affects from becoming too annoying, they should be merely echo'd information to the affected player's screen, or they should have some kind of positive effects. This then, would result in code along the lines of the following; IF PLAYER_AFFECTED(MIND_AFFECT1) SHOW AFFECTS MESSAGES1; DO AFFECTS ACTIONS1; END IF IF PLAYER_AFFECTED(MIND_AFFECT2) SHOW AFFECTS MESSAGES2; DO AFFECTS ACTIONS2; END IF etc. The code for player's mental quirks really is so simple as to not justify further planning.

REFERENCES

1) CircleMUD Documentation, http://www.circlemud.org/ PLAYER STATUS Player status is very much an abstract and subjective concept most of the time. But suffice it to say that players like appreciable status; it comes in to their own personal definitions of playability, and therefore status is good. However status is one o f the critical factors in a MUD, and it is mainly because players like it so much that this is the case. But one must be very cautious indeed when using things offering appreciable status, because if these things come at the expense of the 'lives' of oth er players, then a number of problems arise, obviously. The limits of game balance problems caused by status would appear to be the following; Too Much Emphasis on one status indicator Players become tied up in getting this one item of status. It becomes the be all and end all of the MUD. In the end the MUD in question becomes "Just an exercise in mathematics"(1); just the mathematics of getting the optimum of that single player statist ic. If this value is the so-called status-point(whereby one is awarded for every human player a person kills), this tends to result in new players being put off by being killed too quickly, and the mud can potentially "die" without an influx of new player s. Too few status indicators This can be a problem, and frequently is with base-code MUD's that are just put up on a machine with little or no thought, and likewise for modification. What would seem to happen on MUD's like this is that players, after some amount of playing just feel like they're mechanistically obtaining various status indicators, but feel they are getting nowhere, or gaining nothing for their time, and eventually tire of the whole thing. Status Indicators too Easy to get. Players quickly achieve all possible goals, or get bored of achieving the same or similar goals time after time, and their 'lifetime' on the MUD becomes very short, then they leave the MUD. Hence, again, the mud stagnates, and possibly "dies". This would seem to indicate a number of large status indicators which take a long time to achieve will solve such problems, and hold players attention, thus avoiding stagnation of the MUD. However, this does not mean that all is lost if your MUD suffers from the above ailments. All can, and frequently has been saved by social behaviour within a MUD environment. Merely having a number of core players who get on well and enjoy communicating via the MUD can lure in other people. It is best, though, not to try and capita lise on this too much, as humans are fickle beings. Example Status Indicators Default Indicators(found in most base MUD engines - See Glossary); Hitpoints, Mana, Move Points, Experience, Level, Age(?). Enhanced Indicators; Playerkills, Status, Clan Rank, Player Deaths, Mob Kills, Mob Deaths.

REFERENCES

1) Monochrome BBS, MUD comments file. Conversation between myself, Kent and Khisanth. CircleMUD Documentation, http://www.circlemud.org/. Viewed 14/05/98 PLAYER MANAGEMENT. Beyond the mere file management aspects of a MUD(keeping backups, repairing corrupt files), there are a whole host of other issues to consider. This is because when dealing with a MUD, the players themselves need to be dealt with, rather than just the data associated with them. So as well as just the "normal" problems, there exis t also problems of bug abuse(hacking in disguise), obscenity of language and player actions, and, to an extent, pure bad manners. These problems can be put, partially down to one thing. That is, the problem with using the "avatar" method of user representation, which has implications wider than just MUD's. The problem's heart is in the fact that if you allow someone to take on a per sonification that cannot be physically harmed (well, not physically) but; obviously the avatar can be harmed, but not the player using or controlling that avatar), and one with goals such as they would experience in real life, then the user is bound to in some way become "attached" to their avatar representation. However, the point is that these things will happen, and must be dealt with to avoid legal problems, as MUD's, like all other internet sites of, say, not impeccable image, suffer from problems of reputation, and as such suffer being under much closer - so me might say also much less fair, biased even - observation, and as such have to be far more careful to avoid problems. But now, to consider various issues pertaining to user/player management one at a time, problems first, then solutions; Bug Abuse This is obviously more common in less mature MUD's; it is certainly rife in MUD's labelled as in "alpha" or "beta" test versions. Players will often abuse bugs in a MUD for their own gain, occasionally to the detriment of other players as well. This is p roblematic because if other players gain such an advantage, the balance of the game is lost while a player advances effectively outside that balance. Further to that, if the exploited bug causes the MUD to crash, it may result in a loss for other players (in terms of files becoming corrupted in a crash, or just lost playing time), and indeed downtime for the whole MUD. This must obviously be avoided. Obscenity This is, mostly, easy to combat, purely by not putting anything obscene into the MUD. However, there will always be ways to act in an obscene manner, because of the "free" nature of a MUD's communication, and there will always be players who will (ab)use this freedom, so other methods should be sought. Behaviour/Manners Within a MUD, there are many perfectly acceptable actions which, when used repeatedly, can put people off using particular MUD's, or can offend existing players of a MUD to the point where they may leave to other MUD's. For instance, a "newbie", after being killed repeatedly by other players the first time they use a MUD is unl ikely to play again. So it is often a good idea to limit the use of certain commands. And on to some solutions; Existing Control Functions Within most -if not all- MUD engines, there are some sort of functions which, with varying degrees of flexibility, allow banning of players at the will of implementors or gods. This is one means of controlling players, which, although the most widespread is the least flexible and most harsh; not to mention the least often used. Probably the next most widespread "control" function is some kind of mute of players on various communication channels within the MUD, whereby a player can be denied use of a particular communication channel following abuse of it. Also relatively widespread is some form of "slay" command for the gods of a MUD, with which any god can kill off a normal player instantaneously. And, of course, any god can use the file/player value setting commands to penalise players who cheat, but this is not, as such a feature of the MUD, more another use for maintainance features. But above and beyond all of these, there are the immensely powerful log systems, which can be made to -in certain circumstances- log every action, of a player on certain MUD's (although, sadly, this is one of CircleMUD's flaws, as it does not currently ha ve this facility). Players can, as a result of good logging (which is a matter of delicate balance, as file accesses are the things that take up most resources for a MUD, and an implementor therefore cannot log everything, much as they might like to) be c onfronted with a record of what they've done, and hence implementors(fair) decision making ability, and power is much greater. Then there are many subtle systems of control which vary so widely from MUD to MUD, that I shall refrain from giving them mention. "New" Control Functions Following various other improvements to Dark Mist, various other MUD experiences, and a great deal of discussion with MUD users and implementors alike, the following "new", or recently implemented means of controlling users/players, or combatting various forms of abuse seem to bear mention; A Grace Period for "Newbies". Offering "newbies" a period in which they cannot be killed, but also cannot use many of the MUD functions with potential to offend solves a large number of the problems associated with new players. On a number of MUD's, this constitues a short period of p laying as a "Mortal", before they become an "Avatar" and are able to be playerkilled and use global channels, etc. (This occurs in Dark Mist, which is, in effect, a two-in-one MUD, because it can be played as a normal CircleMUD, or as a more Playerkilling oriented, Undead-Based MUD, along the lines of a MERC MUD. The distinction being that a Mortal and Avatar play each "sub-mud" respectively). Methods Of Limiting PlayerKilling. There are all manner of methods to prevent this, which are all too diverse to mention, but suffice it to say that any reduction in playerkilling can only help add more atmosphere to a MUD, and decrease the amount of general hostility, and lack of trust be tween its players. Generic Means Of Godly Wrath. There are a number of interesting ways in which gods can exert their powers over other players on certain MUD's, which I will detail now. "The Justice Flag" Taken, of all places, from an episode of "Red Dwarf", which featured a prison in which all hostility from a person was reflected back on a person. This was a relatively simple implementation within Dark Mist, which can be set on a player to cause all kinds of diastrous effects for them. Suffice it to say, it seems to work so far. "Object Binding" In all of the God Wars series of MUD's (written by KaVir, aka. Richard Woolock) there is a means of godly punishment by which a god can bind a player into an object and hence trap them. While bound into an object, players obviously cannot move, speak, or do very much at all. As they say, "hours of fun". Means of Avoiding & Monitoring Abuse There are a number of methods within a MUD, or associated with a MUD to manage users. Since most institutions frown upon users of their systems playing "games", the threat that the admin of the system from which a MUD's user plays will be informed that they do so is constant, and worrying for players, and as such is a powerful deterrent. W hat the admin will then proceed to do is both widely variant and beyond the scope of this report. Along with this comes the matter of player registration, which ensures that the address a player gives is correct. If every player to use a MUD registers their email address, the admin of a MUD have a safeguard from the start to keep players in line. Thi s will be discussed later. There is also the widely available facility within MUD's to 'snoop' a player, and see everything that they type, or see. This is an invaluable method of detecting and proving that troublesome players are so. Also, along similar lines, gods can, on some mu ds -less than have the facility to snoop- 'switch' into the body of an NPC and monitor players from there. As well as both of those, there is the -slightly more widespread- facility for gods to move around completely invisible to all normal MUD users, whi ch can be used in such a way as the previous two means. Beyond these, there is also logging of actions which is most useful for checking up on people, this is also fairly widespread. However, beyond all of these high-tech strategies, there is one simple method which is certain to have at least some effect. Having a proper player-management strategy; a proper set of rules and policies, and making these rules widely known, and well enfo rced. This is THE best means of controlling players. If only all of these features were used to their fullest potential, no MUD admin should have any problem with player management, and if similar facilities were implemented in all multi-user environments, then the internet would be a lot better a place.

REFERENCES

Circle MUD Web site, http://www.circlemud.org/, Viewed 12/05/98 Dark Mist Web Site, http://mudhole.spodnet.uk.com/~darkmist/, Viewed 14/05/98 PLAYER REGISTRATION The issue of player registration is one of the keys to a good player management policy. Its basic premise is something along the lines of that you can't manage what you can't control, so you have to have something to hold over players in order to manage t hem. This threat is informing the manager of their system and having their accounts revoked. The issue being that most institutions, academic or corporate, frown on their users playing MUD's, and the administration of their system banning them immediately for doing so. As for why their administration don't notice these users playing MUD's in the first place comes down only to lax, or bad systems administration. But in order to contact the admin of their system, the process is very complex without some kind of information being given. Email addresses are the most typically used such means to simplify the process. Before proceeding further on this note, it is worth mention that one can find out the administration of a system that a player connects from via the whois database of RIPE (the authority responsible for assigning IP addresses), and knowing the IP address that a player connects from, or indeed using an Internic or Nominet whois database. Also, via a domain name, and using the dig command to find out the start of authority for a domain is a good place to start to contact the admin of a troublesome player's system. Back to the topic in hand, though. If a player is to be registered by their email address, there has to be some kind of means to check that a valid email address has been given. Typically, this is achieved by sending an email to the address in question, and waiting to receive a reply in a specified format to validate that address. However, there are a number of methods of validating an email address in an automated manner; The dig command mentioned above can retrieve Mailer Exchange (MX) records for a domain name, which, providing the DNS resolver for the MUD can find that domain name, will yield the address of the Mail Server for the domain from which a person has connected. From there, connecting to that machine on the sendmail port (25) will allo w automated validation of the email address - if this service has not been disabled - via commands who's syntax is stated in relevant RFC documents, or, merely sending an e-mail to the given address, provided the MX record can be retrieved would also be a semi-acceptable solution to validate an address. If it is not possible to find the actual address of that user, then using the address of admin@ will provide an adequate means to contact their systems admin, should problems arise, although in my experience, most system's admin at large organisations tend to ignore such mailboxes as 'admin' and 'postmaster', simply for reasons of time, so this may not be entirely effective. The above should provide enough information for anyone wishing to implement such a registration scheme on a MUD, or other system, but as yet there is neither need, nor will to implement such a system for Dark Mist MUD.

REFERENCES

http://www.internic.net/ Viewed 15/05/98 http://www.nominet.org.uk/ Viewed 15/05/98 http://www.ripe.net/ Viewed 15/05/98 RFC (Request For Comments) Document 821 LANGUAGE ISSUES There is much relevance to languages of all sorts in this scenario, all of which are loosely gathered here, although programming languages are omitted because they only affect the implementor, and speed of implementation, which is, although not a minor is sue, not of great relevance. LANGUAGE AND DEFINITIONS MUD's have a great deal of new vocabulary associated with them, and a number of various alternative nuances of existing words. Most of this is explained in the Glossary, but unfortunately, the problem does not end there, for there is much that must be exp lained in this report which does not fit accurately into a MUDders dialect, or into "normal" english. Beyond that, there are problems of vocabulary associated with implementation of new MUD code. This, though is easily solved, as, along with the Object-Oriented Methodology - and we are all aware that a methodology is critical to good software development -, there comes a set of vocabulary which describes in concise terms what the aims of each implementation "exercise" hopes to achieve. The key terms of which are as follows(1) "Object: An abstraction of something in a problem domain, reflecting the abilities of the system to keep information about it, interact with it, or both; an encapsulation of attribute values and their exclusive services(synonym: An Instance). Class: A collection of one ormore objects with a uniform set of attributes and services, including a description of how to create new objects in the class." Even within the core of any MUD engine, it is immediately evident that there are classes, objects and methods. Taking for example, - as I shall do throughout - CircleMUD(although in this instance the same would be true of most MUD engines), a list of all its core classes, subclasses and so on can be seen as an appendix. Beyond this basic idea of objects, one can also speak of persistent and non-persistent objects, encapsulation, abstraction and the like which provides a powerful framework to describe basic and extended MUD functions with. From this, it follows that one can speak of implementing new classes, with methods, and their communications with other objects and suchlike, rather than spouting reams of unstructured english to describe the same ideas SPOKEN/TYPED LANGUAGE There are people from all manner of countries who use MUD's, and, although the language of the internet is, on the whole, english, there are always exceptions to the rule. In such cases, what does a MUD - or, for that matter any kind of international software - do? It is, alas, true that, at the moment, a MUD takes no account of language, except occasionally in the fantasy context on the whole. However, even that the development of parsers and the like for in-game languages has impact on those for real languages, an d it is only a matter of time before 'good language parsers will appear more commonly, which can only help to aid the playability of all MUD's. This is easily appreciable if one considers how likely they would be to join any internet group where the language was one that they didn't understand! Take, for example the website http://babelfish.altavista.digital.com/ which translates between many languages very quickly, and combine that with thing such as Det Danske Rum on, for example FuskerMUD, which parses communicated text in the room into Quasi -Danish. There is but time and effort in the way there. Until then, a MUD will probably be stuck with english, or people communicating in other languages only of their own accord, and confusing the monolingual English MUD players.

REFERENCES
1) Peter Coad and Edward Yourdon, Object-Oriented Analysis, 2nd Edition. Englewood Cliffs, NJ: Yourdon Press/Prentice Hall, 1990. p53. AltaVista/Digital Web Site, http://altavista.digital.com/ OTHER MAINTAINANCE ISSUES There are certain areas of MUD maintainance which do not seem to be covered in any detail using the ISO9126 framework, yet none the less need mention. "File Maintainance" This, quite simply refers to the maintainance of MUD-related files, some of which are related to stabilty of the system, others more directly to playability. Help files, for instance relate directly to the ease of playing, because without them, how can you know how to use a command that you've never seen before...? There are all manner of other such files which must be kept up to date, but inclusion of all of them would simply be too long. However, the files of primary importance do bear mention, for example, the playerfiles, the world files, and executables are of great importance to systems stability, and as such should be checked regularly. "World Maintainance" This relates to both file maintainance, and to newer areas. In order that a MUD remains playable and retains its players interest, it must have a fresh supply of new zones on a regular basis, to give players new parts to explore. Although not the most i mportant to the problem of continued playability, it is none the less worth mention. Again, this requires a good number of people supporting the MUD, rather than just implementors. "WWW & Support resource maintainance" Of course, a MUD must have support resources. God's must answer their email, game mail, or 'tells' from players. Web pages (if applicable; although I would say that they are fairly essential, especially with the advent of WebRings(1)) should be updated with new MUD events, and so on. Bearing in mind that MUD's aren't graphical, w hich is the exception to the rule, some graphics on the WWW can work wonders. Web pages could be considered especially important as they represent a graphical, searchable gateway into the MUD. Also, of course, there are a number of MUD lists(1) on the WW W, which a successful MUD should aim to be on as many of as possible. Also under this kind of maintainance, there is the hiring and firing of MUD admin staff, to ensure that there is always someone in charge.

REFERENCES

1) The MUD Connector, http://www.mudconnect.com/, Viewed 11/05/98 2) The WebRing homepage, http://www.webring.org/, Viewed 19/05/98 CONCLUSION It is immensely difficult to tell what use this report will be, since its aims are rather diverse. But if only this, it offers excellent documentation for Dark Mist MUD and the extensions I have made to it. Although, while writing this report I had observ ed that in doing so I was learning much more about MUD's in general, and numerous systems issues, which it is very likely that many other MUD implementors have not thought of, and similarly, many other computing professionals may not have thought of syste ms appraisal in such a way; a way which is very valuable. However I would hope that it could be an aid to other MUD implementors in their quest to write the perfect text-based MUD, and go forward in a technological sense to aid developers of GUI MUD's(or indeed myself, for a future project), and indeed, stop numerous MUD's falling prey to themselves, and their own lack of organisation , as happens all too often. There is also a side-issue which has crept past in the background, which is that I would hope that people from certain quarters might take a different view of MUD's, and even games in general, - or at least the implementation thereof - having read this re port, because, if nothing else, MUD's, like games in general, and the Amiga(or indeed any other system's) demo scene, provide a breeding ground and vast training area for the next generation of highly-skilled programmers(although not necessarily software engineers). Not to mention artists, writers, designers, and all of the other aspects incorporated into MUD's which make them more than a talker, or a messaging system, or email, or any game all combined. And a final word to MUD implementors, if nothing else, remember that diversity, originality, and imagination are the key to a good MUD. This report should have illustrated that if nothing else. If it be that your MUD is SQL based, graphical, textual, or anything, be sure that it is something different. What is a MUD? Some would call it a game, some would call it a hobby, some would call it a "nice thing to put on their CV" (Which is my personal favourite). Some would call it "Learning C"(1), still others would call it "a waste of resources and bandwidth". This, though, is just a series of different points of view, and what is needed here is an objective definition. A MUD then, is, to purely expand the acronym is a Multi-User Dungeon, or a Multi-User Domain. Its offshoots have names along similar lines, such as MUSH (Multi-User Shared Hallucination), and such like. To define further, it is an old-style(the accusation has been levelled that it is outdated, but I, like many, would beg to differ on that point) text based adventure game. But it is not merely that. There is, as the acronym makes clear, a multi-user dime nsion to them. This means that you can interact with "real" players as well as computer-generated characters (usually refered to as MOB's, or NPC's, see Glossary), and this all occurs within a computer-generated world, as with adventure games. The basic MUD comes in a number of "flavours", - much like the UNIX operating system-, such as CircleMUD, DikuMUD, MERC, etc. from which point the specifics of each MUD grow, even evolve. As the previous sentence hints at, the base of the MUD is - or should be - just the beginning, and it is the peculiarities of both implementors and players that make the MUD. Suffice it to say then, that to get an idea about a MUD, one must play, or "use" a MUD. Indeed, some would go so far as to say "You haven't lived until you've died on a MUD".

REFERENCES

Merc MUD documentation, Furey, Merc Industries. A METHOD TO THE MUD MAKER Because a MUD is a real-time system, that is, "one which controls an environment by receiving data, processing them, and returning the results sufficiently quickly to affect the environment at that time"(1) (although in this case, the environment is also generated by the system), it is impractical to use a so-called "frozen requirements" methodology(which is most of them) for the implementation of any new features, not to mention that the vast majority of "frozen requirements" methodologies focus on desig n, which takes the form of documentation which is totally separate to the source code(which is more or less the exclusive focus of what one one might call "mud culture" implementations) and of course, time consuming. However, because of terminology, MUD culture, and existing MUD engines natures, one methodology shines through as being well suited to MUD implementation, although admittedly with a tendency towards the lower end of the software capability maturity model(2). This being because of the ease with which its notation and vocabulary can be applied to the MUD scenario, because of its close relationship to prototyping, and its relatively free iterative life-cycle model
 But, as may well be immediately visible from the diagram above, there is a problem with even this methodology, in that stages will frequently be irrelevant, or down to the decision of one person. Consider strategic modelling. The inception and overall idea(l)s of an individual MUD are usually down to one individual, which would seem to negate the whole idea of strategic modelling, and if you were not the sole implementor, the only thing to do woul d be to ask the person responsible for the MUD in question's beginning, and ask their input on any modifications you wished to make. Then there is "Analysis Modelling", which we are fully involved in, as we must establish the requirements of the MUD's players (after all, a MUD is nothing without players) for each new feature's implementation, and modify requirements as development proceeds, and user responses are gathered to the prototype implementation [See later]. And of course, we have "Design Modelling", which is obviously within our, as it were, jurisdiction. From this emergent trend, it seems that OO methodologies, combined with prototyping forms the perfect method of management, although, as always with OO methodologies, it is a little "fuzzy around the edges", "leaving out" certain areas of the methodology . Also, in spite of the suitability of OO methodologies, a MUD is not written in an OO language on the whole (although it may well be possible to code certain modules of one in an OO language while leaving the core still as straight C, irksome as that would be for a purist C programmer); it is largely written in C, which offers little or no scope for encapsulation, which is one of the key features of OO analysis and design, but, as numerous authors state, it is possible to implement OO designed systems in a non OO language and still create a perfectly functional system. They do, however, refrain from mentioning the extra debugging required. PROTOTYPING A few details about prototyping must be added to clarify the previous section. As Yourdon points out; prototyping does not imply OO, and OO does not imply prototyping. They fit well together, but one does not directly imply, or demand use of the other. There is also the slight misnomer of what prototyping actually is, and, as Jennifer Stapleton points out; "It is not experimental, as suggested by the name. It is really the development of small increments of software to meet short term objectives based on the high-level requirements for the system."(3) However, this does not make obvious the fact that, no matter how well planned it is, the initial prototype is always something of a shot in the dark, if only for purely aesthetic reasons. For instance, a prototype could have problems with user acceptance because its base colour was purple rather than blue, which is very little in a computing sense but in an aesthetic sense, can be all too much. Then, beyond the initial prototype, there is risk that, without adequate version control, if a prototype is incremented too quickly, the new features created may trip over themselves, and create more bugs than can be easily located and removed, and withou t adequate version control or backups, there will be no 'safe' copy to go back to. This is a danger that strikes down a number of implementors. Caution is advised when adding new features. Just remember the saying "more haste, less speed", whenever implementing new features.

REFERENCES

1) Edward Yourdon, Modern Structured Analysis. Yourdon Press/Prentice Hall, 1989. 2) The Software Process Capability Maturity Model, Viewed 14/04/98 http://www-sqi.cit.gu.edu.au/CMM/TR25/tr25_ovr.html 3) Jennifer Stapleton, "A Quality Approach To Rapid Applications Development". SQM, Issue 25. http://www.avenet.co.uk/tesseract/QiC/articles/Stapleton/25.html REUSE, PATCHES AND MUD'S The computing industry as a whole seems to have as part of its reigning paradigm to have adopted the idea of reuse as being one to promote. That, along with the fact that it is well supported, and promoted within the context of MUD's justifies its inclus ion here. Because CircleMUD has such a wide net of support - consisting of, among other things, a well mirrored ftp site - there is great scope for reuse between MUD's, to some extent regardless of their code-base. As Yourdon(1) states, there are numerous different types of reuse within the context of analysis and design, such as Data Reuse, Design Reuse, Specification Reuse, and at least for different types of Code Reuse; - Cut and paste of Source code. - Source-Level "Includes". - Binary Links. - Execution-Time invocation. All of these reuse types occur commonly within MUD's, but the code reuse occurs almost as matter of course in MUD implementation and compiling, although Cut & Paste reuse typically occurs very infrequently, and on code examples passed from one implementor to another via some electronic means such as email. Beyond that, the other forms of reuse may occur in the reuse of data files(for instance world/object/mobile/shop files) accross numerous distinct MUD's(this, though, tends to occur as a matter of course, to an extent in the basic startup MUD distribution archives, but it does occur beyond that). Then there is the typical - often annoying - player account of "how xxx works on xxx MUD", which amounts to specification reuse. However, certainly with CircleMUD at least, the most predominant method of reuse is through UNIX-style "Patch" files, which, oddly enough, use the UNIX patch command to generate files indicating the difference between two sets of source code, and output t hem in such a way that these changes can be duplicated on another set of source code. I personally have utilised this method of reuse on a number of occasions, most notably in using the OLC (On-Line Creation) patch for Dark Mist; and of course given credit where credit's due, as one must. Credit, of course, being the bane of the software i ndustry in the form of its lack, ie. piracy, or plagerism. From experience, though, when using patches on a highly-modified MUD, the ratio of fail:success of patches becomes ludicrously small, and beyond a certain point, there is little use in patches at all, unless one is prepared to go through the patch file by hand, and make the modifications manually.(When doing so, remember '-' is remove a line, '+' is put this line in, and it becomes a simple, if time-consuming process...)

REFERENCES

1) Yourdon, Object Oriented Systems Design, 1994. Part 6.3 GROUP DEVELOPMENT ISSUES In the context of OO developments, team development tend to require a number of relevant supporting CASE Tools; that is, configuration management in a group development environment, ability to easily communicate ideas within the group, and such like. In the context of MUD development, these ideas are present in part, sometimes in whole. In the case of darkmist/veil of darkness, only the use of group communications to define enhancements to the MUD as a whole exist, in that the methods of communication within the MUD(detailed elsewhere) allow for multiple parties to contribute ideas to the design, to interact while testing the implementation - they usually analysis of the problem. In fact, it is arguable that the players are the analysts, rather than the implementors, who are merely designers, and, well im plementors; those who implement the solution. Within other MUD developments, the whole issue of version control, good communication within the implementation group and such must be present. In the case where there are multiple implementors responsible for writing the code for the solution, and designing it, this is where version control and such is necessary, otherwise, frankly, all hell breaks loose. The usual form of this, which is admittedly lax, exists only using normal UNIX style methods, and no 'proper' CASE tools are used, in that only files for modules, modifications, etc. that are 'done' exist; nothing for work in progress, as it were. This i s, as it seems, very low on the Software Process Maturity Model. Indeed, one might wonder if it even meets level 1's criteria. The problem in this case is that each member of the implementation team tends to have access to both the 'live' MUD code, and a home-stored 'working' model. I say working slightly jokingly, as such models tend to not work... This causes problems of version control between those two models, AND with the versions available to other members of the implementation team. It is almost ironic that those who implement such a system have little or no co-operation methods amongst themselves. This leads to two possible avenues of investigation; to devise methods of version control for MUD implementation - the implications of which have vast areas of impact -, or to show how groupware in the design part of MUD's tends to assist. Both of which c an be investigated thoroughly given time. As regards configuration management, each users changes must be noted somehow, or able to be reversed in some manner or other. This would require a great deal of duplication of source code in various places, or a vast amount of audit trail data to be kept. The dissadvantages of which are purely space related, which can be a problem in low disk quota situations, but the advantages of proper revision management are manyfold and quite obvious to anyone who has struggled to keep track of various versions of their own code - let alone the code of others - mentally. However, I would suggest a potential solution to this. Storing the 'last known good' version of the MUD being implemented as the home copy, as well as a version that is being worked on and added to on the machine that the implementor in question works on, and, when a set of modifications is completed, using t he patch command to create a patch to for the 'live' code to add the relevant new features to it. This being the case, a successful patch of the aforementioned file onto the live code represents a successful installation without clashing with someone else 's recent modifications, and an unsuccessful patch represents the contrary, whereupon discussion with the other implementors is needed. However, it is still necessary to backup the live code before performing the above operation, as it will result in, as it were, corruption of the live code if the patch fails. It is made a lot worse in this case by the fact that the class library of the MUD is part of the source code itself, as it is usually C code, rather than C++ which makes no provision for separating the class library from the code properly. With respect to how MUD design on behalf of players operates in a groupware sense, the backbone of the mechanism to achieve this is simply a set of files for comments on the MUD, and numerous means of direct communication with the MUD's implementors (via noticeboards, global, local and private communication, and MUD mail). From these files, which are effectively a requirements analysis, requirements for additions to the MUD are discerned, and then proceed to being planned and implemented. It is, as with a ll groupware, the front-end to this process of discerning that is the heart of the groupware element, and how it fits in with the abstract world that is the realm of MUD's. This, unfortunately would take far, far too long to explain in any detail that wou ld do it justice, and hence must be omitted.

REFERENCES

Software Process Maturity Model specifications; Viewed 14/04/98 http://www-sqi.cit.gu.edu.au/CMM/TR25/tr25_ovr.html Ed Yourdon, Object-Oriented Systems Design: An Integrated Approach DESIGN ISSUES As with group development issues, the area of use within MUD's tends to be lax, but there is scope, and indeed example of it being practised using accepted methods, rather than just 'hacking it'. The issue here is with the fact that 'accursed documentation' takes too long it seems, rather than any more deep-seated problems. There are a number of possible solutions to this problem. The most obvious of which is to not allow implementors who don't document their work to join your implementation team. However, MUD implementors are, on the whole, known for their dislike of documentation. As a result, it seems more likely that, as it were, reverse-documentation - that form of documentation that nobody will admit to their superiors that they do, but do anyway -, ie. documentation of a solution after the fact, would be accepted. That or a code-generator which documents its output and input. However, the idea of having a code-generator, again, goes against the ethos of MUD development, and indeed, the ethos of most programmers in any field. As such, it is rendered useless, as it would be subject to the 'sabotage' of implementors who dislike it. So we are left with after the fact documentation. This is possible, and indeed, there are many systems capable of doing it. In the case of MUD's, though, one cannot hope to use graphical documentation, as the systems that MUD's run on are typically text-o nly UNIX ones, which do not support X Windows due to scarce computing resources. Not to mention that a lot of MUD coding is, a) done off line, and b) not done on X capable machines. However, text based documentation, for instance, structured english, etc. is a distinct, and very viable idea indeed. And one can be quite sure that a tool for converting C, C++ or other code(MUD's are not only implemented in C, merely the bulk of them; there are plans afoot, or already implemented for SQL-based MUD's, and MUD's written using ADA) MUD into structured english format, which would serve as quite adequate documentation for the structure and purpose of the code. Then, perhaps, with this proven, such a method may get used the other way around; as it is undeniably useful to keep mental notes on program structure in such a format. Beyond any structured method, a means of documentation which is already frequently used in the MUD scenario, and is strangely ommited by most texts on the subject, is good commenting within the source code, describing such things as one would hope to desc ribe within a structured english description. Indeed, it is my personal belief that well-commented code is far more valuable than any form of documentation which is entirely separate from the source code being worked on, and is more of an aid to clarity. This theory falls down, though, because of the mere fact of 'what merits documenting, and what does not', although this problem is present in any methodology, but in direct proportion to the formality of the methodology in question. This particular method of documentation although not for the unskil led programmer is an invaluable aid for intermediately skilled, and even highly skilled programmers. There is also a perhaps neglected argument in favour of code-commenting, in that there is no problem of version control and configuration management when one modifies the comments in a block of code(as anyone making modifications can merely comment out the old code, and add in their new version, thus allowing simple backtracking); the team does not have to backtrack through reams and reams of other printed documentation to ensure consistency. However, it is of course arguable that good commenting is merely an excuse for those who skimp on paper-based documentation, which will, no matter how heartfelt the protestations of th ose who use it, not go away. THE WIDER PICTURE Perhaps one of the most striking thoughts on this subject is that the MUD engine provides a startlingly good basis for construction of interactive environments. For instance, it would be possible to create a 'virtual office' environment within a MUD (cer tainly one using OLC) within a matter of minutes. Of course this is very optimistic, as creation of such an environment would involve a great deal of tailoring to the users needs to be of any great use. The point, though, is that a MUD features all the essential ingredients for the creation of such an environment. Look at it like this; A desk is an object. You can put things in it, therefore an object of type container. (Roughly speaking) Or it could be an object that you can sit at, hence a room. A secretary is a user of the office, therefore a 'player'. An IN tray is an object, which you can put things in. Hence definitely a container. A Post-it note is something you can write on, hence an object of type note. A whiteboard can be written on, and can keep results until they are removed; hence an object of type noticeboard. The office itself is a room, hence a room type. My point should now be adequately clear. It is possible to create an abstraction of almost any real-life environment in a MUD, with varying degrees of work. The relevance of this to real-world applications is rather vast, touching on groupware, client-se rver architectures, server applications, and that the implications of playability, or its subcomponents on any such system is a critical success factor. Although it is possible to make a purely working environment out of a MUD engine, that does not mean that a MUD set in a fantasy environment is not valuable in its own right. It offers means of communication, expression, and escape that no other groupware system, computer game, or communication system can offer in the same way, in spite of the academic stigma against a 'game'. PARTIAL FUNCTION CATALOGUE FOR CIRCLEMUD The following attempts to detail useful atomic functions provided by CircleMUD, Some of these functions may stem from DarkMist MUD, but that too is available via FTP from mudhole.spodnet.uk.com void skip_spaces(char **string); Skips the spaces in a string. char *one_argument(char *argument, char *first_arg); Extracts one single-word rgument from 'arguments', returning it in two ways. char *two_arguments(char *argument, char *first_arg, char *second_arg); Extracts two single-word arguments from 'argument'. char *three_arguments(char *argument, char *arg1, char *arg2, char *arg3); Extracts three single-word arguments from 'argument'. char *one_word(char *argument, char *first_arg); Extracts one word from 'argument', but couting quoted words as one word. char *one_spell_word(char *argument, char *word); Extracts one word from 'argument', treating single-quoted words as one word. char *any_one_arg(char *argument, char *first_arg); As with one_argument, but does not ignore fill words, such as 'from', 'to', etc. int fill_word(char *argument); Returns true if 'argument' is a fill word, false if not. int calc_bits_set(long flags); Counts the number of bits (out of 32), that are set on a long integer. int number(int from, int to); generate a random number between from and to (inclusive); int dice(int number, int size); 'Roll' a number of dice of size supplied as arguments. char *str_dup(const char *source); A case insenstive version of the standard strdup() function. int str_cmp(char *arg1, char *arg2); Another case-insensitive equivalent function, in this case, strcmp(). int strn_cmp(char *arg1, char *arg2, int n); Yet another case-insensitive one, this time, strncmp(). void sprintbit(long bitvector, char *names[], char *result); Prints strings from an array associated with set bits into an output buffer. Useful for standardisation of such output. int get_line(FILE *fl, char *buf); Read all up to a return code from a file, outputting to buffer, and returning the number of actual lines in the file read. int num_pc_in_room(struct room_data *room); Counts the number of player characters in a given room. void show_affect(struct affected_type *af, char *buf); Output the affect data for a given affect in a standard form. int is_number(char *str); Better way of doing things that if (atoi()), etc... This is just the start. In the name of environmentally friendly behaviour, download the CircleMUD source and have a look for yourself. GLOSSARY A ALIGNMENT - Relative 'goodness' or 'evilness' of a character, used to define which shops will serve them usually, and an Dark Mist whether they become a demonic or angelic servant of a GOD. AREA - See Zone. ARTIFACT - Within a MUD, this tends to mean an object of which there is only one, eg. Excalibur, Ayres Rock, The Blarney Stone. AVATAR - In this report, either; A players presence in a MUD, ie. their PLAYER CHARACTER(PC), though which they interact with the MUD realm, or; A character level above mortal, which is derived from a role-playing game concept, meaning a gods' physical incarnation, or specially gifted servant. As such, avatars tend to have bonuses above mortals, such as not getting hungry or thirsty, enhanced abilities, and such like. B BUG - Fault, error, problem. Have two main classifications, crash, and non crash; bugs which cause the mud to exit, and restart, and bugs which do not. C CircleMUD - The MUD engine updated and maintained by Jeremy Elson, freely available, and useable to start ones own MUD. So named because it ran on the Circle cluster of machines at John Hopkins University (jhu.edu). CREATOR - A MUD implementor who's area of concern is modifying, updating, and adding to the world database (objects, mobiles, rooms, etc...) D DARKCITY - The 'latest' of the GODWARS series of MUD's. DARK MIST - A CircleMUD, mine infact, to be found at mudhole.spodnet.uk.com 4321 DEAD - Deceased. Kaputt. Finito. Unless you are a vampire, or undead that is. DEATHTRAP - Fairly self-explanatory. A room in certain types of MUD which causes immediate death, loss of equipment and other associated penalties. DECAPITATE - To chop someone, or something's head off. DIKUMUD - One of the very first MUD engines, which is the basis for almost all MUD engines still in use today. E EXHAUSTION - As with human exhaustion, is something like the exhaustion that would hospitalise, is almost a kind of paralysis in a MUD sense. EXPERIENCE POINTS(EXP) - An abstraction of real life experiences quantified as a number, defines a players level in most cases. F FRENZY - A state of rage, suffered by hungry undead creatures, and demented mortals. Often implemented in Undead-Based MUD's as a means to control use of powers. G GOD - Blasphemous or not, MUD's have to have some means of controlling their users, they come in the shape of GOD's. GODWARS - A generic term for a group of MUD's created by KaVir, currently, Godwars resides at mudhole.spodnet.uk.com 6660. GREATER GOD - The next step up from a GOD. H HIT POINTS - How many times someone can hit/stab/maim you before you die. Hitpoints are this attribute quantified, at times very poorly. I IMMORTAL - The lowest common denominator of GOD status. Immortals have little or now power. However, the definition of immortal varies widely from MUD to MUD. IMPLEMENTOR - A general word for the admin of a MUD, they are the ones who create, maintain, and manage a MUD INCAPACITATE(D) - To prevent from moving or acting, or the state of having, or the act of causing this. L LAG - The mud slang word for the game locking up. Usually down to either the MUD server locking up, the network failing, or the physical machine the MUD runs on crashing, and TCP/IP connections somehow not being closed. LEVEL - Related to experience points, this is how a character compares to other characters, although it is usually not a good measure, as it is comparative of a player's avatar, rather than including the 'real' player as well. M MANA - Mental energy. A term used in role-playing systems for the amount of, as it were 'spellcasting power' a character has. MERC - A type of playerkilling MUD. Engineered by MERC Industries. MOB(Mobile) - A computer generated character within a MUD, usually posessed of some kind(s) of artificial intelligence. Chiefly used as cannon fodder for PC's. MORTAL - A human being, or, at least the MUD presence of one. A Mortal can die, be wounded, get hungry or thirsty, get exhausted, and suchlike. MOVEMENT POINTS - A measure of the amount of movement a player can make before they become too tired. Occasionally used distinctly from exhaustion. MTBF - Mean Time Between Failures. The average time between failures of a system. MTTF - Mean Time To Failure. A measure of reliabilty, speaks of the mean time (in sensible units) to the next system failure in statistical distribution terms. MTTR - Mean Time To Repair. The average time between a system's failure, and the repair of that failure. MUD - Multi-User Dungeon. The subject of this report. A multi-user game, in the style of early text-based adventure games. MUSE - Multi-User Shared Environment. A sub-type of the MUD genre, probably without too much focus on the killing aspect of the game. MUSH - Multi-User Shared Hallucination. A sub-type of the MUD genre, which pitches its atmosphere as an alternate reality, rather than a roleplaying game. N Newbie - A new and inexperienced user, not just of a MUD. NPC - Non-player character, See MOB. O OBJECT - The MUD projection, or abstraction, if you will, of a real-life object. ie. A sword, which a MUD character (not necessarily a PLAYER) can pick up, wield, and fight with. Distinction will be made where applicable between this and the Object- Oriented development nuance of the word OLC - OnLine Creation. A common addition to MUD's which allows modification of the world databases (objects, rooms, mobiles) online, rather than having to modify their data files in an ordinary text-editor, and reboot the MUD to enable changes to take effect. P PARADOX - An impossibility, a contradiction, much as the dictionary definition. Another means of controlling players. Used sometimes as justification for putting a player at risk if they playerkill too much. In Dark Mist, used for paradoxical situations, ie. an angel becoming evil, or a demon becoming good. PC(Player Character) A user/player's presence in the MUD, referred to by some as an 'avatar'. A projection into the realm in which the MUD is set, through which a player interacts with that realm. Q QUEST - A mythical-style quest within a MUD which gives goals other than direct advancement to a player. Players like quest-systems, although implementors tend to favour fully-automated quest systems, which never seem to be quite as much fun as human-lead quests. R ROOM - Much the same as a real-life room, a room in a MUD is an enclosed area or an area which is distinct, not necessarily because of walls or doors, infact quite often a completely arbitrary division, but it defines in a very subjective sense the distance between two points. S STATUS (POINTS) - Usually the status indicator associated with the number of playerkills (as opposed to player deaths) a character has. T TICK - The accepted unit of MUD time. Usually equivalent to an hour of MUD time, and between 30 seconds and 2 minutes of real time. TIME - Mud time usually works on the principal of using a unit of MUD-time as the next lowest unit of real time, ie. minutes become seconds, years become months, or similar. None the less, all MUD's have some kind of time. U UNDEAD - Not dead, yet not alive. Vampires, Liches, and such like fit into this category. Undead-based MUD's seem to be the most popular at the moment, probably due to the vast scope for new and interesting powers to be given to so-called 'creatures of the night'. V VNUM(Virtual Number) - An identifier within a MUD which ties an object with template for when it is loaded into the MUD. An instantiation of an object can be referenced by an RNUM (real number), and the template is referenced by a VNUM. W WORLD - The MUD's very own plane of existence. To a MUD what the planet earth is to the human race. A MUD's 'world' is made up of a series of Zones. Z ZONE - A virtual geographical area within the MUD, which may follow a particular theme. Usually each MUD area is written by a different author. A series of MUD 'Zones' makes up each MUD's 'World', and a Zone is made up of a group of ROOMS. BIBLIOGRAPHY Books; DNS & BIND, 2nd Edition. Paul Albitz & Cricket Liu. O' Reilly & Associates, Inc. ISBN 1-56592-236-0 Java Examples In a Nutshell. David Flanagan. O' Reilly & Associates, Inc. ISBN 1-56529-371-5 Object-Oriented Systems Design: An Integrated Approach Edward Yourdon, 1994. Prentice Hall/Yourdon Press. ISBN 0-13-176892-1 Modern Structured Analysis Edward Yourdon. Prentice Hall/Yourdon Press. ISBN 0-13-598632-X Programming for Artificial Intelligence: Methods, Tools and Applications. Wolfgang Kreutzer and Bruce McKenzie Addison-Wesley Publishing Company. ISBN 0-201-41621-2 Structured Design: Fundamentals of a Discipline of Computer Program and Systems Design. Edward Yourdon and Larry L. Constantine. Yourdon Press/Prentice Hall. ISBN 0-13-854471-9 Distributed Systems Concepts and Design. George F. Coulouris and Jean Dollimore Addison-Wesley Publishing ISBN 0-201-18059-6 Real-Time Systems - Investigating Industrial Practice Ian Pyle, Peter Hruschka, Michel Lissandre and Ken Jackson. John Wiley and Sons. ISBN 0-471-93553-0 Software Engineering: A Practitioner's Approach Roger S. Pressman McGraw Hill ISBN 0-07-709411-5 Windows NT4 Unleashed Jason Garms, et al. Sams Publishing ISBN 0-672-30933-5 White Wolf role-playing system documentation. Ravenloft scenario documentation. (Advanced) Dungeons and Dragons documentation. URLs; The CircleMUD resources page; http://www.circlemud.org/ The Dark Mist Homepage; http://mudhole.spodnet.uk.com/~darkmist/ DSDM Article, Jenny Stapleton; http://www.avnet.co.uk/tesseract/QiC/articles/Stapleton/25.html DSDM Consortium Homepages; http://www.dsdm.org/ The Software Capability Maturity Model; http://www-sqi.cit.gu.edu.au/CMM/TR25/tr25_ovr.html The InterMUD homepages; http://www.imaginary.com/ Nominet Home Page http://www.nominet.org.uk/ Internic Home Page http://www.internic.net/ RIPE Home Page http://www.ripe.net/ UNIX "man" Pages; gethostaddr() named() identd() yes() Mailing Lists; The CircleMUD Mailing List; listserv@circlemud.org RFC Documents; rfc821 - Mail Standards. Other; CircleMUD Documentation, http://www.circlemud.org/ MERC Industries, Merc MUD documentation. Monochrome Help Documentation, http://www.mono.org/

