
Progress in Programming Languages
KIM B. BRUCE

Williams College ^kim@cs.williams.edu&

A great deal of progress has been made
over the last forty years in the design
and implementation of programming
languages. Unfortunately, most pro-
grammers have little experience with
imperative programming languages de-
veloped after the early 1970s, and still
use older languages like FORTRAN,
COBOL, Pascal, and C. Yet in the last
twenty or so years there have been im-
portant improvements to these lan-
guages.
Perhaps the most important develop-

ment has been the introduction of fea-
tures that support abstract data types
(ADTs). These features allow program-
mers to add new types to languages that
can be treated as though they were
primitive types of the language. The
programmer can define a type and a
collection of constants, functions, and
procedures on the type, while prohibit-
ing any program using this type from
gaining access to the implementation of
the type. In particular, access to values
of the type is available only through the
provided constants, functions, and pro-
cedures. Simula-67 was one of the first
languages to provide support for ADTs,
though it did not provide support for
hiding the representation of types. For
example, in the mid-’70s Clu’s clusters
provided full support for ADTs. Two of
the more popular languages providing
full support for ADTs (though using
slightly different mechanisms) are
Modula-2 and Ada-83.
These languages have also provided

better support for separate, but not in-
dependent, compilation. That is, pro-
grams can be broken into smaller

pieces, each of which can be separately
compiled. However, since these different
compilation units depend on each other,
there must be a way of reliably passing
type information from one unit to the
next. C provides primitive facilities to
support this with header files, while the
(non-standard) Pascal units provide
somewhat better support (though with-
out information hiding). Modula-2 and
Ada-83, on the other hand, support sep-
arate compilation by providing separate
specification and implementation units.
This allows programs to be compiled
once the imported units specifications
have been defined, while leaving the
implementations to be compiled later.
In fact, programmers may interchange a
variety of implementations of specifica-
tions without having any impact on the
code of programs using these units.
Clu and Ada-83 also provided support

for parameterized types and polymor-
phic operations by allowing parameter-
ized ADTs. For instance, in Ada-83 one
can specify a parameterized binary
search tree as:

generic
type BSTElt is private
with function LessThan(x, y:
BSTElt) return BOOLEAN;

package BinSrchTree is
. . .
end BinSrchTree;

This package can then be instantiated
with any type T that has an appropriate
LessThan function defined for it. More-
over, in both Clu and Ada-83 these pa-
rameterized ADTs can be type checked
before being instantiated, which guar-
antees that instantiated versions will be
free of type errors as long as the opera-

This research was partially supported by NSF grant CCR-9424123.
Copyright © 1996, CRC Press.

ACM Computing Surveys, Vol. 28, No. 1, March 1996



tions required in the declaration exist.
The ability to define such parameter-
ized ADTs is clearly very useful to pro-
grammers.
At least partially in response to the

concerns raised in Djikstra’s famous let-
ter “Go to considered harmful” [1968],
language designers have searched for
more structured language features to
handle cases where programmers for-
merly used goto statements. One such
construct is the exception mechanism,
which appeared in PL/I, Clu, and Ada,
among others. Exceptions can be
“raised” either automatically by the sys-
tem (e.g., upon division by zero) or by
the programmer (e.g., on an attempt to
pop an element off of an empty stack).
As suggested by these examples, excep-
tions are typically used to handle error
conditions that arise in programming.
In many of these cases the currently
executing unit (e.g., the pop routine for
a stack) has no useful action that can be
taken on detecting the error, but a call-
ing routing may.
When an exception is raised, a search

is made for an appropriate “handler.” If
a handler for the exception is found in
the current activation unit, it is exe-
cuted, otherwise the search for a handler
for the exception is made down the run-
time stack. That is, the search proceeds to
the unit that called the currently execut-
ing unit, and so on, until a handler is
found. If no handler is found in the run-
time stack, the program halts. (A good
source of information on this and the
other programming-language constructs
discussed above is Louden [1993]).
More recently, more attention has

been paid to object-oriented languages
like Smalltalk [Goldberg and Robson
1983] and Eiffel [Meyer 1992] as well as
to adding object-oriented features to
older languages such as Pascal, C, Ada,
and even COBOL. As noted in this issue
by Hirshfeld and Ege, object-oriented
languages provide support for abstrac-
tions similar to that described above,
though from a somewhat different point
of view. (Languages like Clu, Modula-2,
and Ada-83 are sometimes called object-

based rather than object-oriented, be-
cause of the different point of view and
because they lack features like subtyp-
ing and inheritance commonly found in
object-oriented languages.) Many of
these languages also include support for
parameterized types, polymorphic rou-
tines (or classes), and exceptions. It is
not clear yet whether or not the current
focus on object-oriented languages will
eventually replace interest in more tra-
ditional imperative languages.
Meanwhile, there have been many in-

teresting developments in modern func-
tional languages that provide support
for ADT’s, exceptions, and polymor-
phism. Languages like ML [Milner et al.
1990] and Haskell [Hudak and Fasel
1992], for instance, are statically typed
and support implicit polymorphism.
Features in these languages like struc-
tures, functors, and type classes provide
a great deal of support for modular pro-
gramming. The Common Lisp Object
System (CLOS) provides support for a
variant of object-oriented features
known as multi-methods, while a forth-
coming version of ML, ML 2000, will
almost certainly include support for ob-
jects.
The future of logic programming lan-

guages is not clear at the moment. After
a burst of interest in the early 1980s,
they have settled into a fairly narrow
range of applications. More recent work
has focussed on replacing the “logic” in
these languages by the solution of con-
straints [Benhamou and Colmerauer
1993]. It is premature to say how impor-
tant these languages will be in the long
run, but very interesting work is con-
tinuing in this area.
Languages are also playing an impor-

tant role in the support of concurrency
and distributed computing. The key
ideas that must be supported are the
sharing of information and resources by
different processes and the need to en-
sure the consistency of shared informa-
tion across these processes. Languages
can simply support primitive features to
fork off processes and synchronize them
(e.g., using semaphores), or they can

246 • Kim B. Bruce

ACM Computing Surveys, Vol. 28, No. 1, March 1996



support more elaborate features like
monitors (Concurrent Pascal) or tasks
(Ada). Interesting work is progressing
on concurrent object-oriented lan-
guages, which may provide finer control
over concurrency (especially with re-
gard to access to shared variables) in-
side objects. Other approaches to con-
currency rely on smart compilers being
able to detect and support concurrency
without programmer intervention. The
most popular of such approaches involve
imperative languages like FORTRAN
(see the article by Wolfe in this issue),
while others involve functional or data-
flow languages where there is less of an
obviously sequential flow of control
within a program. At this point it is
clear that programmer-controlled con-
currency is very difficult, but it is not at
all clear what the ultimate solution to
this difficulty will be.
The articles about type systems by

Cardelli and semantics by Schmidt in
this issue highlight the importance of a
more theoretically grounded study of
programming languages. Just as the
syntax of a programming language can
be presented formally (e.g., as a context-
free grammar), the typing rules and se-
mantics of a programming language can
also be presented using formal systems.
Given a precise formal presentation, it
is possible to prove only that a type
system will successfully type-check pro-
grams without certain kinds of errors
and that rules for reasoning about pro-
grams are sound.
As an example of interesting develop-

ments on the implementation of pro-
gramming languages, improvements in
garbage-collection algorithms have led
to better performance among functional
and object-oriented languages that rely
on automatic storage management
rather than requiring the programmer
to worry about the error-prone activity
of manually disposing of heap-allocated
memory.
We appear to be in a period of turmoil

in the choice of programming lan-
guages. While the main focus of atten-

tion currently is on object-oriented lan-
guages, many of the more popular
languages either lack support for some
of the important features mentioned
above, provide unsafe or excessively
rigid type systems, or have extremely
complicated conceptual models. There is
some hope that, building on recent re-
search in programming languages, the
next generation of object-oriented lan-
guages will be both simpler and safer,
while taking advantage of the greater
support for modeling and reuse found in
object-oriented languages. Certainly the
emergence of languages like Java,
which provide platform-independent
support for programming with the abil-
ity to download and execute programs
and libraries via capable web browsers,
will have an important impact on both
programmers and users.
We may be witnessing the beginning

of a resurgence in languages that are
simple, safe, and high-level, yet are suf-
ficiently powerful to provide efficient so-
lutions to real problems. One thing,
however, is clear. We should not expect
one language to provide the best solu-
tion to all problems. In particular, dif-
ferent paradigms lead programmers to
think in quite different ways. Which
language is most useful will likely de-
pend on the problem to be solved.

REFERENCES

BENHAMOU, F. AND COLMERAUER, A. EDS. 1993.
Constraint Logic Programming: Selected Re-
search. MIT Press, Cambridge, MA.

DIJKSTRA, E. W. 1968. Goto statement consid-
ered harmful. Commun. ACM 11, 3, 147–148.

GOLDBERG, A. AND ROBSON, D. 1983. Smalltalk–
80: The Language and Its Implementation.
Addison-Wesley, Reading, MA.

HUDAK, P. AND FASEL, J. 1992. A gentle intro-
duction to Haskell. SIGPLAN Not. 27, 5 (May).

LOUDEN, K. C. 1993. Programming Languages:
Principles and Practice. PWS, Boston, MA.

MEYER, B. 1992. Eiffel: The Language. Pren-
tice-Hall, Englewood Cliffs, NJ.

MILNER, R., TOFTE, M., AND HARPER,
R. 1990. The Definition of Standard ML.
MIT Press, Cambridge, MA.

Progress in Programming Languages • 247

ACM Computing Surveys, Vol. 28, No. 1, March 1996


