
Operator Overloading

make user-defined operators
the same as builtin operators

What Is Operator Overloading?

• Operator overloading is a kind of
polymorphism, called ad-hoc polymorphism.

• A builtin operator like + can be used to
denote operations of several different data
types.

• For example, + can denote the integer
addition or double addition.

2

How Is Operator Overloading
Implemented?

3

int i1 = 1, i2 = 2, i3;
double d1 = 1.0, d2 = 2.0, d3;

i3 = i1 + i2;
d3 = d1 + d2;

Compiler uses the types of operands
to distinguish different operations.

How Is Operator Overloading
Implemented?

4

int i = 1;
double d1 = 2.0, d2;

d2 = i + d1; Is there an addition for an integer
operand and a double operand?

No! Then, how to do it?

The integer value of i is converted
automatically into a double value!

Can an operation of a user-defined

data type be denoted as an

operator like + too?

5

6

// complex.h -- The interface
class Complex
{
public :

Complex(double, double) ;
const Complex operator +(const Complex &) const;

private :
double r;
double i;

} ;

// complex.cpp -- The implementation
#include “complex.h”
const Complex Complex::operator +(const Complex & c) const
{

return Complex(r + c.r, i + c.i);
}

Complex c1(2, 2), c2(4, 4), c3;
c3 = c1 + c2;

// c3 = c1.operator+(c2);

The Keyword const

7

const Complex Complex::operator +(const Complex & c) const
{

return Complex(r + c.r, i + c.i);
}

 The second const means that the parameter c

cannot be changed in the function.

 The third const means that the member variables

r and i cannot be changed in the function.

 The first const means that the returned object

cannot be changed.

8

Complex c1(1, 1), c2(3, 3), c3(5, 5), c4;
c4 = c1 + c2 + c3;

(1, 1) + (3, 3)

(4, 4) + (5, 5)

(9, 9) = (9, 9)

c4 = (c1 + c2) + c3;

1

23

const

constnonconst

The calling object is
the first operand

(c1 + c2).input(); // error

9

double d = 1;
Complex c1(2, 2), c2;
c2 = c1 + d;

c2 = d + c1;

The + operator of Complex
requires a Complex operand.
The value of d is automatically
converted into a Complex!

// complex.h -- The interface
class Complex
{
public :

Complex() ;
Complex(double) ;
Complex(double, double) ;

…
private :

double r;
double i;

} ; double has no + operator
for Complex operand and
no converter from Complex
to double!

// c2 = c1.operator+(d);

// c2 = d.operator+(c1);

Binary operator member
functions are not symmetric!

Friend Functions

• Friend functions are nonmember functions
that have all the privileges of member
functions.

• The most common kinds of friend functions
are overload operators.

10

11

// complex.h -- The interface
class Complex
{
public :

Complex(double, double) ;
friend const Complex operator +(const Complex &, const Complex &);

private :
double r;
double i;

} ;

// complex.cpp -- The implementation
#include “complex.h”
const Complex operator +(const Complex & c1, const Complex & c2)
{

return Complex(c1.r + c2.r, c1.i + c2.i);
}

double d;
Complex c1(2, 2), c2(4, 4), c3;
c3 = c1 + c2;
c3 = c1 + d; // operato+(c1, d)
c3 = d + c2; // operator+(d, c2)

Binary operator nonmember
functions are symmetric!

Overloading the Assignment Operator
=

12

int x, y, z;
x = y = z = 1;

String x, y, z;
x = y = z = “Hello World!”;

int x, y, z;
x = (y = (z = 1));

String x, y, z;
x = (y = (z = “Hello World!”));

x.operator=(y.operator=(z.operator=(“Hello World!”)));

The Assignment Operator =

• The default assignment operator only
performs memberwise copies.

• A class should define its own assignment
operator if it has pointer member variables.

• The assignment operator must be a member
function.

13

14

// String.h -- The interface
class String
{
public :

String & operator = (const String &);
private :

char * s;
} ;

// String.cpp -- The implementation
#include “String.h”
String & operator = (const String & str);
{

if (this != &str) {
delete [] s;
s = new char[strlen(str.s) + 1];
strcpy(s, str.s);

}
return *this;

}

String s1(“Hello”), s2(“World”);
s1 = s2;

What happens when the default
assignment operator is used?

// Avoid memory leak!

// “this” is a pointer to the current object.

String s1(“Hello”);
s1 = s1;

What happens?

Return-By-Value v.s. Return-By-
Reference

15

15

x.operator=(y.operator=(z.operator=(“Hello World!”)));

How many “Hello World!” is created using return-by-value?

x.operator=(y.operator=(z.operator=(“Hello World!”)));

1
constructor

23
copy

constructor

45
copy

constructor

7
copy

constructor

6

How many “Hello World!” is created using return-by-reference?

x.operator=(y.operator=(z.operator=(“Hello World!”)));

1
constructor

234

16

Copy Constructor

Variable Initialization

Pass By Value Return By Value

The Big Three

• The copy constructor, the destructor, and the
assignment operator are called the big three
because if you need any of them, you need all
three.

• If a class does not define these member
functions, the compiler will define a default
version for them.

• If a class has pointer member variables, the
class should define its own version to handle
dynamic memory allocation and deallocation.

17

L-Values & R-Values

• Consider x = x + 5.

• The x on the right-hand-side of = denotes the
value (or storage content) of x. The value of x
is called the r-value of x.

• The x on the left-hand-side of = denotes the
address (or storage location) of x. The address
of x is called the l-value of x.

18

1919

String s1, s2(“Hello World!”), s3(“Hello Universe!”);

s1 = s2 = s3;

// Return-by-reference returns an address!

// What happens?

(s1 = s2) = s3;

double d1, d2 = 1.0, d3 = 2.0;

(d1 = d2) = d3; // This is legal for builtin data types!

// So, it is better legal for user-defined data types!

Return-By-Reference

20

double & rbrFunction(double & x)
{

return x;
}

double d = 2.0;
cout << rbrFunction(d) << endl;
rbrFunction(d) = 4.0;
cout << d << endl;

// 2.0

// 4.0
// Function call appears in lhs of =

Return Types

• Return-by-value: calls copy constructor, cannot be
used as an l-value, can be changed directly.

• Return-by-constant-value: calls copy constructor,
cannot be used as an l-value, cannot be changed
directly.

• Return-by-reference: does not call copy
constructor, can be used as an l-value, can be
changed directly.

• Return-by-constant-reference: does not call copy
constructor, cannot be used as an l-value, cannot
be changed directly.

21

Overloading the Array Operator []

22

CharPair a(‘A’, ‘B’);
cout << a[1] << a[2] << endl;

cout << “Enter two letters (no spaces):\n”;
cin >> a[1] >> a[2];
cout << “You entered:\n”;
cout << a[1] << a[2] << endl;

a*1+ = ‘C’;
a*2+ = ‘D’;
cout << a[1] << a[2] << endl;

Overloading the Array Operator []

23

class CharPair
{
public:

CharPair();
CharPair(char fVal, char sVal) : first(fVal), second(sVal) { }
char & operator [](int);

private:
char first;
char second;

}

Overloading the Array Operator []

24

char & operator [](int index)
{

if (index == 1)
return first;

else if (index == 2)
return second;

else {
cout << “Illegal index value.\n”);
exit(1);

}

Overloading the Array Operator []

• The operator [] can be overloaded to access
elements in an aggregate data type.

• The operator [] must be a member function.

• The parameter of the operator [] must be an
integer type, that is, enum, char, int, long or
an unsigned version of one of these types.

• If the operator [] can appear in an expression
on the lhs of an assignment operator, then it
must return a reference.

25

Overloading <<

26

Complex c1(1, 1), c2(2, 2);
cout << c1 << c2; What is the return type of <<?

Can << be implemented as a
member function?

(cout << c1) << c2;

friend ostream & operator<<(ostream & out, const Complex & c)
{

out << c.r << “ +i ” << c.i;
return out;

}

What are the parameter types of <<?

Overloading >>

27

Complex c1, c2;
cin >> c1 >> c2;

friend istream & operator>>(istream & in, Complex & c)
{

char ch;
in >> c.r >> ch;
if (ch != ‘+’) , cout << “No + in Complex number.\n”; exit(1); -
in >> ch;
if (ch != ‘i’) , cout << “No i in Complex number.\n”; exit(1); -
in >> c.i;
return in;

}

(cin >> c1) >> c2;

What is the return type of >>?

Can >> be implemented as a
member function?

What are the parameter types of >>?

Rules on Overloading Operators

• When overloading an operator, at least one
parameter (one operand) of the resulting
overloaded operator must be of a class type.

• Most operators can be overloaded as a
member of the class or a friend of the class.

• The following operators can only be
overloaded as members of the class: =, [], ->,
().

28

Rules on Overloading Operators

• You cannot create a new operator. All you can
do is overloading existing operators.

• You cannot change the number of arguments
that an operator takes. For example, you
cannot change % from a binary to a unary
operator when you overload %.

29

Rules on Overloading Operators

• You cannot change the precedence and
associativity of an operator.

• The following operators cannot be
overloaded: ., ::, sizeof, ?:, and .*.

• An overloaded operator cannot have default
arguments.

30

How a Member Function Correctly
Access Its Member Variables?

31

String s1, s2, s3(“Hello World!”);
s1 = s3;
s2 = s3;

s1.operator=(s3);
s2.operator=(s3);

String & operator = (const String & str)
{

if (this != &str) {
delete [] s;
s = new char[strlen(str.s) + 1];
strcpy(s, str.s);

}
return *this;

}

How a Member Function Correctly
Access Its Member Variables?

32

For each member function, the compiler automatically
adds “this” as its first parameter!

s1.operator=(&s1, s3);
s2.operator=(&s1, s3);

String s1, s2, s3(“Hello World!”);
s1 = s3;
s2 = s3;

String & operator = (String *this, const String & str)
{

if (this != &str) {
delete [] this->s;
this->s = new char[strlen(str.s) + 1];
strcpy(this->s, str.s);

}
return *this;

}

