Operator Overloading

What Is Operator Overloading?

* Operator overloading is a kind of
, called

* A builtin operator like + can be used to
denote operations of several

 For example, + can denote the
or

How Is Operator Overloading
Implemented?

intil=1,i2=2,i3;
double d1=1.0,d2 =2.0, d3;

13=1i1+12;
d3 =d1+d2;

How Is Operator Overloading
Implemented?

int 1=1;
double d1 =2.0, d2;

d2 =i+di;

Can an operation of a user-defined
data type be denoted as an

operator like + too?

// complex.h -- The interface
class Complex
{
public :
Complex(double, double) ;
const Complex operator +(const Complex &) const;
private :

double & Complex c1(2, 2), c2(4, 4), c3;
double i; c3 =cl+c2;
¥ // c3 =cl.operator+(c2);

// complex.cpp -- The implementation
#include “complex.h”
const Complex Complex::operator +(const Complex & c) const

{

return Complex(r + c.r, i + c.i);

}

The Keyword const

Complex Complex::operator +(Complex & c)

{

return Complex(r + c.r, i + c.i);

}
¢ The second const means that the parameter c
cannot be changed in the function.
¢ The third const means that the member variables
r and i cannot be changed in the function.
¢ The first const means that the returned object

cannot be changed.

(1, 1) + (3, 3)

|

(4, 4) + (5, 5)
const 1 l

(9,9)=1(9,9)

nonconst 3 2 const

double d =1;

Complex Complex c1(2, 2), c2;
{ c2=cl+d;
r c2=d +cl;

'

Binary operator member
functions are not symmetric!

Friend Functions

* Friend functions are nonmember functions
that have all the privileges of member
functions.

* The most common kinds of friend functions
are overload operators.

// complex.h -- The interface
Complex

{

Complex(double, double) ;
friend const Complex operator +(const Complex &, const Complex &);

r: double d;
Complex c1(2, 2), c2(4, 4), c3;
¥ c3=cl+c2;

c3=cl+d; //operato+(cl, d)

c3=d+c2; //operator+(d, c2)
// complex.cpp -- The implementation

const Complex operator +(const Complex & c1, const Complex & c2)

Binary operator nonmember
functions are symmetric!

return Complex(cl.r + c2.r, cl.i + c2.i);

11

Overloading the Assignment Operator

int x,v, z; int x,v, z;
x=y=z=1; x=(y=(z=1));
String X, vy, z; String X, Y, z;

x =y =z = “Hello World!”; x = (y = (z = “Hello World!”));

x.operator=(y.operator=(z.operator=(“Hello World!”)));

The Assignment Operator =

* The assignment operator only
performs memberwise copies.

* A class should define its own assignment
operator if it has member variables.

* The assighment operator must be a member
function.

// String.h -- The interface

_ String s1(“Hello”), s2(“World”);
String

sl =s2;
{
What happens when the default

String & operator = (const String &); assignment operator is used?

S;
}: String s1(“Hello”);
sl =s1;
// String.cpp -- The implementation

. _ What happens?
String & operator = (const String & str);

{
if (this != &str) { // “this” is a pointer to the current object.

delete [] s; // Avoid memory leak!
s = new char|[strlen(str.s) + 1];
strcpy(s, str.s);

}

return *this;

} 14

Return-By-Value v.s. Return-By-
Reference

x.operator=(y.operator=(z.operator=(“Hello World!”)));

return-by-value

x.operator=(y.operator=(z.operator=(“Hello World!”)));

7 6 5 4 3 2 1

return-by-reference

x.operator=(y.operator=(z.operator=(“Hello World!”)));

a 3 2 1

15

Variable Initialization

e

Pass By Value

|

Copy Constructor

N

Return By Value

16

The Big Three

* The . the > and the
are called the

because if you need any of them, you need all
three.

e |f a class does not define these member
functions, the compiler will define a
version for them.

* |f a class has pointer member variables, the
class should define its own version to handle
and

L-Values & R-Values

e Consider
e The x on the -hand-side of = denotes the
(or) of x. The value of x
is called the of x.
e The » on the -hand-side of = denotes the
(or) of x. The address

of x is called the of x.

String s1, s2(“Hello World!”), s3(“Hello Universe!”);
sl =s2=5s3;

(s1 =s2)=-5s3;

double d1,d2 =1.0,d3 =2.0;
(d1=d2)=d3;

19

Return-By-Reference

double & rbrFunction(double & x)
{

return Xx;

)

double d =2.0;

cout << rbrFunction(d) << endl;
rbrFunction(d) = 4.0;

cout << d << endl;

Return Types

. calls copy constructor, cannot be
used as an l-value, can be changed directly.

. calls copy constructor,
cannot be used as an I-value, cannot be changed
directly.

: does not call copy
constructor, can be used as an I-value, can be
changed directly.

: does not call copy
constructor, cannot be used as an |-value, cannot
be changed directly.

Overloading the Array Operator |]

CharPair a(‘A’, ‘B’);
cout << a[l] << a[2] << endl;

a[l] = ‘C’;
a[2] ='D’;
cout << a[l] << a[2] << endl;

cout << “Enter two letters (no spaces):\n";
cin >> a[l] >> a[2?];

cout << “You entered:\n”;

cout << a[l] << a[2] << endl;

Overloading the Array Operator |]

class CharPair
{
public:
CharPair();
CharPair(char fVal, char sVal) : first(fVal), second(sVal) { }
char & operator [](int);
private:
char first;
char second;

}

Overloading the Array Operator |]

char & operator [](int index)
{
if (index==1)
return first;
else if (index == 2)
return second;
else {
cout << “lllegal index value.\n"”);
exit(1);

Overloading the Array Operator |]

ne operator [] can be overloaded to access
ements in an data type.

T
e
The operator [] must be a
T

ne parameter of the operator [] must be an
, that is, enum, char, int, long or
an unsigned version of one of these types.

If the operator [] can appear in an expression
on the lhs of an assignment operator, then it
must

Overloading <<

Complex c1(1, 1), c2(2, 2);
cout << cl << c2;

(cout << cl) << c2;

26

Overloading >>

Complex cl, c2;
cin >> cl1 >> c2;

(cin >> cl1) >> c2;

Rules on Overloading Operators

* When overloading an operator,
(one operand) of the resulting
overloaded operator must be of a

* Most operators can be overloaded as a
of the class or a of the class.

* The following operators can only be
overloaded as of the class: =, | |, >,

Rules on Overloading Operators

* You cannot create a operator. All you can
do is overloading existing operators.

* You cannot change the
that an operator takes. For example, you
cannot change % from a binary to a unary
operator when you overload %.

Rules on Overloading Operators

* You cannot change the and
of an operator.

* The following operators cannot be
overloaded: , , ', and

* An overloaded operator cannot have

How a Member Function Correctly
Access Its Member Variables?

String s1, s2, s3(“Hello World!”);
sl =s3;
s2 =53;

String & operator = (const String & str)
{
if I= &str) {
delete [] -;
= new char[strlen(str.s) + 1];
strcpy(s, str.s);
}

return *

}

How a Member Function Correctly
Access Its Member Variables?

String s1, s2, s3(“Hello World!”);

sl =5s3;
s2 =5s3;
String & operator = (, const String & str)
{
if (I= &str) {
delete []
= new char[strlen(str.s) + 1];
strcpy(, Str.s);
}
return *

}

