ENCAPSULATION

Wh lation?

d its associated

cted and cannot be

+ The data structure can only be accessed through

a group of publicized operations.

How ent Encapsulation?

0 combine a data

d operations.

on to prohibit the access

+ Use the pub11ic section to publicize the

associated operations.

member
— .
functions

Comp
c1=1initCo , 2);
c2 = initComplex(4, 4);
c3 = c1.add(c2);

Int lementation

he separation of

1onN.

ly information needed

+ The implementation contains all the details of

implementing a data type.

Why are private ciaie

void Complex:: plex(double re, double im) {...}
Complex Complex::add(Complexc) {...}
Complex Complex::sub(Complexc) {...}

Advantages

of Information Hiding

The inteérface serves as a contract between the users

and the implementer of the type.

The users need to know as few information as

possible in order to use the type.

The changes of implementation of the type do not

affect the use of t

The reliability of t

guarantees the re

ne type.

ne publicized operations

iability of the type.

Initialization of Variables

) types

+ Complexc={7, 73;

Co

ction that is

bject is created.

alize the values of

her sort of initialization.

e of a constructor is
me as the name of class!

uctor does not have

mplex ci(2, 2), c2(4, 4), C3;
3 = c1.add(c2);

Complex:: e re, doubleim) {r=re; i=im;}
Complex Complex::add(Complexc) {...}
Complex Complex::sub(Complexc) {...}

10

The Member Initialization List

#include
Complex::Complex(double re, double im)
: r(re), i(im) This version is preferable

11

J 4

Multiple Constructors

ne constructor.

) parameters is

constructor.

12

-- The implementation
mplex.h”

lex()
The default constructor

plex(double re)

ex::Complex(double re, double im)
: r(re), i(im)

{}
Complex c1, c2(2), c3(4, 4);

4 No parentheses for the default constructor
13

Classes with Dynamic Data

variable that is a

ucture.

ember variables

ory allocation.

14

ar * str)

har[strlen(str) +1];
(s, str);

s = new char[1];
s[o] ="\o’;

15

ber function that is called

ject is destroyed.

te memory thatis
en the object is created

an-up tasks.

+ A class should define its own destructor if it has

pointer member variables.

16

-- The implementation

/A

String s(“Hell

? The destructor avoids memory leak!!

Co

ctor that has one

type as the class.

l-by-reference

para

+ The parameter is normally a constant parameter.

18

he implementation
ng.h”

(const String & str)

trlen() +1];

I/

a new copy!

String 53(52 -

orms are the same!
String s4 =52;

19

The Copy Constructor Is Called
Automatically When

When a class object is being declared and is

initialized by another object of the same type.

Whenever an argument of the class type is

passed as a call-by-value argument.

When a function returns an object of the class

type.

berwise copies!
s point to the same string!

The destr string of str (and s) after the call!
}

The destructor of s tries to delete the string of s again!

21

