FRAME for Achieving Performance Portability within Heter ogeneous
Environments*

Ren-Song Ko and Matt W. Mutka
Department of Computer Science and Engineering
3115 Engineering Building, Michigan State University
East Lansing, M1 48824-1226
E-mail: {korenson,mutka} @cse.msu.edu

Abstract

Resource heterogeneity offers a new challenge to
portability of resource critical applications such as mul-
timedia or interactive applications. Under heteroge-
neous environments, a priori knowledge of available re-
sources is not always feasible during the development
stage. As a consequence, resource critical applica-
tions must probe dynamically the resources and recon-
figure to adapt themselves to different computing envi-
ronments. We propose a component-based framework,
FRAME, and CSML to help people develop and deploy
resource critical Java applications in a heterogeneous
environment. Under FRAME, the assembly of an appli-
cation is postponed to execution time so that the ap-
plication may be customized by gathering resource in-
formation from the environments. CSML may help peo-
ple develop components and specify the intended perfor-
mance. Finally, an application, the GO game, is used to
evaluate FRAME under various environments.

1 Introduction

It is very likely that future computing environments
are composed of a wide range of devices, with diverse
architectures and purposes, interconnected via networks.
Software portability under such a heterogeneous envi-
ronment brings challenges to software developers. Cross
platform compilability provides source code level porta-
bility. With careful coding, the software may be com-
piled into native code for various platforms. Neverthe-
less, it is probably difficult to deploy and use the soft-
ware. That is, the source code has to be compiled for the
target platform, either by vendors or users, and the com-

*Thiswork is supported in part by the National Science Foundation
under grants no. 009017, 9911074, and 9700732.

puting environment needs to be correctly configured,
such as required hardware and shared libraries. The Java
platform promises “Write Once Run Anywhere,” which
provides platform independent code level portability. In-
stead of native code, the software is compiled into plat-
form independent intermediate bytecode that will be ex-
ecuted by a virtual machine. It mitigates the difficulty
for software deployment and use, because recompilation
for a target platform is not necessary.

Resource heterogeneity offers a higher level chal-
lenge to portability to many applications including mul-
timedia or interactive applications. For instance, while
an interactive application may run perfectly on a desk-
top, it may not work on a handheld computer because of
inadequate resources. It might be desirable to lower the
quality of output on a handheld computer to achieve a
better performance. Moreover, if a platform provides
some special functionality, the performance may im-
prove if the software has the knowledge and may take
advantage of the special functionality.

In order to achieve such a higher level performance
portability, the information of available resources on tar-
get platforms are necessary but, unfortunately, not avail-
able until run-time. Therefore, the application must
probe dynamically performance capabilities and recon-
figure to different computing environments instead of
assuming the capability of target platform. Criteria for
probing, such as resource requirements, performance,
and quality are specified as constraints during the soft-
ware development stage.

Nevertheless, specification of constraints raise chal-
lenges in complex software systems development. The
specified constraints may not be orthogonal. For exam-
ple, performance usually declines when achieving better
output quality. Moreover, today complex software sys-
tems are usually collaborative projects. The constraints
that individual developers envision may sharply differ.

While developers at higher level software are concerned
about overall performance, developers at lower level
software may be only focused on the performance of
sub-tasks. The constraints in complex software systems
will be hierarchical.

We propose a Java framework, FRAME, and
CSM. (Component/constraint Specification Markup
Language) to help people develop, deploy, and use re-
source critical software on various platforms. We eval-
uate FRAME and CSML on an application that executes
on a range of platforms, from a desktop computer to a
mobile device. The research problems we address are

e How do users specify performance and quality of
applications for the purpose of enhancing perfor-
mance portability?

e How do applications customize themselves to a
broad range of computing environments?

e How do developers specify hierarchical con-
straints?

The remainder of this paper is organized as follows.
The architecture of FRAME is described in the next sec-
tion, followed by the description of the specification
markup language, CSM_. Section 4 describes the appli-
cation, the GO game, running under different environ-
ments consisting of a handheld computer and a desktop.
Finally, the last two sections will give a summary, sur-
vey of related work, and then discuss potential future
investigations.

2 FRAME
2.1 Overview

In many mass production industries, such as automo-
biles and electronics, the final products are assembled
from parts. The parts may be built by various vendors,
but they are plug-in compatible if they have the required
functionality and satisfy specifications. This is the idea
behind FRAME, in which the applications are assembled
from parts (or components). Furthermore, the informa-
tion about component specifications (or constraints) are
actually embedded into implementation of components
and an automatic assembling process is possible. Be-
cause of the automatic assembling process, the applica-
tions may not only be assembled during the development
stage, but also be assembled “on the fly” so that the ap-
plications may be customized to specific computing en-
vironments.

An application should be composed of components
under FRAME. Each component has constraints and co-

@ o 0 O

Launcher Component

Component Version

Figure 1. Software hierarchy under FRAME

operates with other components through an unambigu-
ous interface. The application may be executed as a
process on single machine, or distributedly on multi-
ple machines, which require a special entity called the
component stub to handle the communication between
multiple machines. To develop an application, develop-
ers first need to decompose the application into compo-
nents. The information about each component, includ-
ing the component location and child component depen-
dency, should be stored in a server called the compo-
nent registry. For each component, developers need to
design its interface consisting of the services it can pro-
vide and the constraints it has. Finally, each compo-
nent needs to be implemented and information about the
implementation, including version number, should also
be registered to the component registry. Furthermore,
various implementations with different resource require-
ment may be developed and used for specific computing
environments.

Fig. 1 is a general software hierarchy. The depen-
dency of components is defined via services; that is, a
parent component requires services from its child com-
ponents, and vice versa. Each component, except for the
root component, might have more than one implemen-
tation or version. Only one version of each component
is needed to execute a program. The component depen-
dency information needs to be registered to the compo-
nent registry and, of course, the whole software hierar-
chy has to be resolved during run-time by querying the
component registry.

The software is not directly executed by users but via
the launcher, which will trigger the component assem-
bling, and the execution of the software. Users specify
performance constraints in the launcher and execute it
on the target platform.

FRAME provides the Java APIs for communication
between target platforms and registry, component load-
ing, component assembling, and component initializa-
tion. Details about FRAME will be explained with an
example, the GO game in the following subsections.

2.2 Component registry

The component registry is a server that stores infor-
mation about components. The information, such as the
available versions of components and their locations, are
necessary during the component assembling. Before a
component may be used, it must register the informa-
tion to the registry. Since new versions of components
with different resource requirements might be developed
after the software is developed, the software should not
have any knowledge about the version-dependent infor-
mation in advance. It must retrieve the version specific
information from the registry.

2.3 Component

Components are key entities under FRAME. A com-
ponent may provide services that may be used by other
components, i.e., the parent components. As an exam-
ple, fig. 2 is software hierarchy of a GO game that con-
sists of three components. Component boar d is the
user interface and the root component that needs ser-
vice from its two child components: Al and audi o.
The component Al is the opponent that a user plays
against and has two different implementations, GhuGO
and Random The former implementation is more com-
petitive. Its Al engine is inherited from GnuGO source
code developed in C [1] and is compiled as a native
shared library. This implementation has many recur-
sive function invocations that require much stack mem-
ory and CPU computation. Therefore, this version is not
suitable for slow, battery powered machines with lim-
ited memory. The second implementation is less com-
petitive to play, but requires less computation and mem-
ory resources. The audi o component may play back-
ground music and has two different implementations:
M DI anddurmmy. M DI implementation is able to play
a MIDI audio file and requires that the target platform
has a sound device. If the target platform does not have
asound device, the dumy implementation will be used,
which does not have any performance effect on compo-
nents boar d and Al . To simplify the example, each im-
plementation of each component is labelled according to
table. 1.

As mentioned earlier, a component may have mul-
tiple versions of implementation with different require-
ments and qualities of service. Resource requirements

version: MIDI version: Dummy

Audio

Board

version: GhuGO version: Random

Figure 2. Software hierarchy of the GO
game

of each service may vary among versions. The collec-
tion of these resources required for a component i with
version j are denoted as R;;. For example, the required
resource for the M DI version of the componentaudi o
is a sound device. Also, it is not appropriate to use the
GnuGO version for a battery powered platform because
of power consumption. Therefore, its overall resource
requirement would be R3; = {“A sound device exists.”,
“Platform is not battery powered.”}. Instead of speci-
fying the resource requirement, the dunty version is
specified as the “default” version of the audi o; that is,
if the required resources of other versions are not satis-
fied, the default version will be used.

Each component has parameters, p¥ where p¥ is the
kth parameter of component ¢, to characterize its perfor-
mance or quality for implementations. These parame-
ters should be in some default finite domain that may
be specified by parent components or the application
launcher. The collection of default parameters within
a domain for a component ¢ with version j is denoted as
P;;. For example, boar d component developers may
be interested in the response time of the first move, i.e.,
the elapsed time from player move to computer move,
and power consumption of first move. Thus, these two
metrics could be represented by two parameters p} and
p? respectively. The maximum response time might be

version 1 version 2
component 1 board N/A
component 2 GhuGO Al Random Al
component3 | M DI audi o | dumry audi o

Table 1. Label of each component

set at 10 seconds. The power consumption is measured
in percentage of a fully charged battery, and the max-
imum power consumption of the first move might be
0.5% since a typical GO game may involve more than
100 moves. These metrics determine the default do-
main of p} and p?. Therefore, the collection of pa-
rameter default domains for both component boar d is
Py = {“0<pj <107, “0 < pf <0.5”}.

Because the components are hierarchical, the param-
eters are also hierarchical. While the components are
connected via services, the parameters are connected by
internal connectors and external connectors. For a com-
ponent, its parameters may be not independent. The re-
lations between the parameters, by analyzing or mod-
eling, are specified as internal connectors, denoted as
D,;;. For the component boar d, a longer response time,
pt, will usually consume more power, p?. Their pro-
portional relation may be modeled as a linear relation,
pi > 20p2. Therefore, the collection of the internal con-
nectors for the component boar d is Dy; = {“p} >
20p3” }.

The developers of the different components may be
interested in different performance metrics. These pa-
rameters may be dependent or independent. Also, a par-
ent component may need to specify the parameter do-
main of its child components. For example, although the
boar d component and Al component developers may
be interested in the response time and power consump-
tion of the first move, both parameters may have dif-
ferent meaning from different perspective. Since com-
ponent audi o may also consume resources, i.e., CPU
and power, the response time of component boar d, pi,
should take component audi o into consideration and
may be longer than the response time of component Al ,
ps. Therefore, there must be some connections between
the parameters of the component ¢ with version j and
its child components, and the collection of all these con-
nections are specified as external connectors, M;;. For
component boar d and its child component, the rela-
tion between the response time parameters may be mod-
eled as a linear relation, pI < 1.1pL. Similarly, the
relation between the two power consumption parame-
ters may be modeled as a linear relation, p? < 1.1p3.
Thus, external connectors between the parameters of the
component boar d and its child component, the Al , is
My = {“p; < 1.1p5”, “pt < 1.1p3"}.

Each element in R;;, P;;, D;;, and M;; is called a
constraint that should be specified in the form of a predi-
cate and implemented as a boolean function in Java. The
component constraint C;; for component ¢ with version
j is defined as the set of all constraints, or

(Cij = RZ’]’ U Pij U Dij U Mij

and the feasible component 4 is defined as the compo-
nent ¢ with version j such that all constraints of C;; are
satisfied.

2.4 Root component

The root component of the software hierarchy is a
special component and the starting point of component
assembling. While it shares the some common proper-
ties as a regular component, such as the specification of
R;;, P;j, Dyj;, and M;;, it has only one provided ser-
vice, mai n, which is the starting point of the applica-
tion execution and will be called by the launcher after
the component assembling.

The root component also has parameters in a default
finite domain as normal components. Nonetheless, the
range of its parameters may be specified by users via an
application launcher. For example, users may specify
the response time and power consumption of the root
component boar d in an application launcher.

2.5 Component stub

Instead of running on a single machine, the compo-
nents of applications may be distributed automatically
to multiple platforms based on available resource and
user specified constraints. For two non-distributed com-
ponent objects, A and B, executing on a single plat-
form, they actually execute within a process and com-
municate with each other through the regular method
invocation mechanism within the process. For two dis-
tributed component objects executing on two different
platforms, instead of using the real component B, com-
ponent A actually interacts with the stub of the com-
ponent B, which implements the communication in-
frastructure with a remote daemon process called the
FRAME agent . During the remote method invocation,
the component stub will transfer necessary information
about the method and its associated object, which is B,
to FRAME agent ; it will also pass the method argu-
ments. Once the information is received, the FRAME
agent will locate the object of the specified method,
invoke the object method with the arguments from the
stub, and then pass back the returned value to the stub.

2.6 Component assembling

Suppose that a program requires components
C1,Cs,...,C;. The collection of C;,,, for component
C1,Ca, - ..,C; with version vy, vs, . ..,v; respectively,
is called a software constraint S,,,, .. »; - For instance, all
four possible software constraints of the GO game, cor-
responding to all four possible combination of compo-
nents for the GO game, will be 8111 = Cll UCZl U(C31 y

S112 = Ci1 UGy UCsa, S121 = Ci1 UGy U Cgy and
S122 = Ci1 UGy U Cas.

If all constraints within S,,,,..,, are satisfied,
Suyvs...w; 1S called a feasible software constraint and
components Ci,Co,...,C; with version vy,vs,...,v;
respectively will form a feasible program. Before a pro-
gram is executed, it needs to search for the appropriate
version of each involved component through a process
called component assembling. Whether a program is
able to execute will depend on whether the user specified
parameters and the computing environment can produce
a feasible program; if not, the program will not execute.

The first step of the assembling process is to construct
all possible software constraints S, ,,....;, Which is done
by resolving the software hierarchy, loading each ver-
sion of the involved component and building component
constraint C;; from loaded component. After construct-
ing all possible software constraints, then the remain-
ing assembling process is basically a constraints solving
problem; that is, finding a feasible software constraint
from all possible software constraints, which will in turn
give the corresponding feasible program. Once the fea-
sible program is found, the appropriate version of each
involved component will be initialized with appropriate
values of parameters that will satisfy the software con-
straint. For the GO game, one difference for a given
Al component between these two software constraints
(S111and Sq10, Or S191 and S29) is existence of a sound
device. If no sound device exists, the feasible program
will be the one using the dummry version but not the
M DI version because the constraint, “A sound device
exists.”, is not satisfied.

For distributed applications, the component assem-
bling process will distribute components to speci-
fied platforms before constructing software constraints.
There might be more than one possibility to distribute
components depending on the number of components
and specified platforms, i.e., n,(D"C_l) possibilities with
n. being the number of components, n,, being the total
number of specified platforms, and the root component
always being executed on the first specified platform.
We call each possibility a distribution, and a distribu-
tion as an n-distribution, 1 < n < n,, if all components
are distributed to n of n,, specified platforms. For each
distribution, we may construct all possible software con-
straints and determine if a feasible software constraint
exists by solving the constraints. A distribution is called
feasible if a feasible software constraint can be found
within the distribution. Therefore, the component as-
sembling process for distributed applications is to find a
feasible distribution from all possible distributions.

Component specification

CSML compiler

! i 1

Component Stub,
Component Register

Base implementation of
Java Interface

Java Interface

Inheritance

Component implementation

Figure 3. Flow chart of using CSM to de-
velop a component

2.7 Application launcher

As mentioned earlier, an application is not directly
invoked by a user but via a special program called the
launcher. The launcher will take user specified con-
straints of software, i.e., parameters range of the root
component. It then will retrieve the root component by
consulting the location information of the root compo-
nent from the component registry, and then start the as-
sembling process.

To execute a distributed application, users only needs
to specify a set of, instead of one, target platforms. Be-
cause we want users to interact with the application on
a certain platform that will be the first platform of the
set, the root component will execute on the first spec-
ified platform, and the rest of the components may be
distributed to all specified platforms.

3 CSML

While FRAME provides the framework to allow
component-based software to be assembled before ex-
ecution, the usage of the FRAME APIs may not be
straightforward. Instead of implementing in Java code
directly, developers specify services and constraints
in CSML (Component/constraint Specification Markup
Language) that is an XML-based markup language. As
shown in fig. 3, CSML will generate a component inter-
face and a base class of component implementation in
Java from the specification and component developers
only need to inherit the base class to implement the com-
ponent. CSML will also generate the component stub
and the component register that is used to register com-
ponent information in the registry.

3.1 Root component specification example

1 <root-component name="board" application="GO0"

2 uri="http://192.168.1.111/JavaGO.jar"

3 registry-host="192.168.1.111">

4 <parameter name='‘response_time" id="pll"

5 value-type="int" upper="10" lower="0"> ...

6 </parameter>

7 <parameter name="power_consumption’ id="pl2"

8 value-type="float" upper="0.5" lower="0"> ...
</parameter>

<internal-connector id="f1">

11 <from-current parameter-id="pl1l" alias="varl" />
12 <from-current parameter-id="pl12" alias="var2" />
13 <definition> return “varl# >= 20 * Tvar2#;

14 </definition>

15 </internal-connector>

16 <child-component name="Al" id="c1"

17 registry-host="192.168.1.111" />

18 <child-component name="audio™ id="c2"

19 registry-host="192.168.1.111" />

20 <external-connector id="f2">

21 <from-current parameter-id="pl1l" alias="varl" />
22 <from-child child-id="cl1"

23 parameter="response_time" alias="var2" />

24 <definition> return “varl# <= 1.1 * “var2#;

25 </definition>

26 </external-connector>

=
o

28 <main>

29 <instance name="Ai" child-id="c1" />

30 <instance name="Audio" child-id="c2" />

31 <required-service service="play" child-id="c1" />
32 <required-service service="playAudio"

33 child-id="c2" />
34 <definition> ...
35 </main>

36 </root-component>

</definition>

Table 2. CSM. for the component boar d

Table. 2 is the specification of the root component
boar d in CSM.. The element root-component specifies
the name of root component (in attribute name), host-
name of component registry (in attribute registry-host),
and location (in attribute uri) in lines 1-3. Parameters
are specified in element parameter with name and their
range (in attribute upper and lower), lines 4-9. Child
components are specified in element child-component,
lines 16-19. Other constraints are specified in element
internal-connector, lines 10-15, and external-connector,
lines 20-26. Their definition are specified in the form of
Java code, which should return a boolean value, i.e., true
if the constraint is satisfied. For example, the definition
of the constraint p! > 20p? is specified as “ret urn
“varl# >= 20 * “var 2#;” with varl and var2
being aliases of parameter response time p} and power
consumption p? respectively. There is also a specifica-
tion for the mai n function in lines 28-35. In the ex-
ample, mai n will call the service pl ayAudi o() pro-
vided by Audi 0, an instance of the component audi o,
and pl ay() provided by Ai , an instance of the compo-
nent Al .

3.2 Component specification example

<component name="‘audio" ...'>
<general>

1
2
3 -
4 <provided-service id="sl1">

5 <declaration method-name="playAudio"

6 return-type="void" /> ...

7 </provided-service> ...

8 </general>

9 <customized version="MIDI"

10 uri="http://192,168.1.111/midi _jar">

11 <constraint-definition constraint-id="s1">

12 <resource-requirement>

13 <resource name="sound-device" ...>
14 <built-in><sound /></built-in>

15 </resource>

16 </resource-requirement> ...

17 </constraint-definition>

18 </customized>

19 <customized version="dummy"

20 uri="http://192.168.1.111/dummy.jar"> ...
21 </customized>

22 </component>

Table 3. CSM. for the component audi o

Table. 3 is the specification of the component audi o
in CSM.. The format is very similar to the root compo-
nent specification. In addition to constraints, the pro-
vided service of a component is specified in the element
provided-service. The element general, lines 2-8, speci-
fies the information that is version independent and ele-
ment customized, lines 9-21, specifies the version depen-
dent information where, except version number, there
are resource requirements of s1 for each version with
s1 corresponding to provided service pl ayAudi o. In
the example, the M DI version specifies a sound device
as a resource requirement in lines 11-17.

3.3 Launcher specification example

1 <launcher name="GO launcher" application="G0"

2 registry-host="192.168.1.111">

3 <target host="192.168.1.34" arch="arm"™ .../>

4 <target host="192.168.1.111" arch="i686" .../>

5 <constraint name="response_time" value-type="int"
6 lower="0" upper="15" />

7 <constraint name="power_consumption®

8 value-type="float" lower="0" upper="1" />

9 </launcher>

Table 4. CSML for the GO game launcher

CSML also allows users to specify target platforms
and the intended performance of the application, and
generate the application launcher. Table. 4 is the specifi-
cation of the launcher. It specifies the application to ex-
ecute on two target platforms. The component boar d
will be executed on the first platform and the other two

Figure 4. Response time of the GnuGO Al
engine

may be distributed to the second platform. It also speci-
fies intended performance and output quality in the ele-
ment constraint, lines 5-8, which corresponds to the pa-
rameters of application. Once the constraints are speci-
fied, the range of the root component parameters, pi and
p2, will be replaced by the user specified range and the
new range will be used during the component assem-
bling.

4 Application demonstration

In this section, we describe a demonstration of
FRAME using the GO game described in section 3.
The component boar d is inherited from JavaGO, a
Java Applet that is originally developed by Alain Papa-
zoglou [11]. The experimental platforms include a Com-
pag iPAQ H3670, which is a small powerful handheld
computer based on the Intel StrongARM 32-bit RISC
processor running at 206 MHz with 16 MB ROM and
64 MB RAM, and a desktop with a 900 MHz Pentium
I11 processor and 256 MB RAM.

Fig. 4 compares the response time of the first sev-
eral moves on the iPAQ and the desktop. The response
time is no more than 30 seconds on the desktop, but may
exceed 400 seconds on the iPAQ. Fig. 5 compares the
CPU load of the first several moves with both boar d
componentand the GaruGO Al component on the iPAQ,
and boar d component on the iPAQ and the GhuGO Al
component on the desktop. Most of time the CPU is
busy for the first case, the GhuGO Al component on
the iPAQ, but idle for the second case. Power is a scarce
resource on a handheld computer and high CPU utiliza-
tion consumes much battery power [5]. Together with a

DAl on iPAQ
Al on Pentium |

CPU Load

0 11 22 33 44 55 66 77 88 99 110 121 132 143 154 165 176 187 198 209 220 231 242 253

Second

Figure 5. CPU load of the GnuGO Al engine

longer response time, it is probably not possible to finish
a game on the iPAQ with the GauGO Al component on
the same iPAQ. Based on our experiments, the remain-
ing power after ten moves is only 76% for the first case
and 98% for the second case.

Because of limited computation power of the iPAQ,
it may be frustrating and impractical to execute the en-
tire GO game with the GhuGO Al component on the
iPAQ. Under FRAME, if users specify one target plat-
form, the less competitive Al will be used since the re-
sponse time constraint of GhuGOversion is not satisfied
on the iPAQ. Alternatively, users may specify multiple
target platforms to distribute the GhuGO version of Al
component to a remote machine.

5 Reated work

Existing middleware specifications such as
CORBA [9] and DCOM [4] simplify the construc-
tion of component-based distributed applications.
Nonetheless, they do not define strategies for cus-
tomizing themselves flexibly to dynamic environments.
Recent research in reflective middleware tries to over-
come this limitation. For example, COMERA [13]
provides a framework based on Microsoft COM that
allows users to modify several aspects of communica-
tion middleware at run-time. DynamicTAO [8] supports
on-the-fly reconfiguration on CORBA ORB based
on The ACE ORB(TAO) [12] that is the open source
CORBA-compliant ORB.

Numerous architectural description languages
(ADLs) have been developed to capture the key design
properties of a system and provide mechanisms for
specifying component requirements. For example,

Wright [2] supports the specification and analysis of
interactions between components. ACME [6] supports
the interchange of architectural descriptions between a
variety of architectural design tools, and representation
and satisfaction of constraints.

6 Conclusion and futurework

Under heterogeneous environments, resource critical
software should be aware of the heterogeneity and pro-
duce the needed performance on the available resources.
FRAME is an adaptive software framework developed in
Java, which allows Java applications to be assembled
“on the fly” and, therefore, be customized to specific
computing environments. CSM_ allows people to spec-
ify the high-level characteristics of component and will
generate Java code to work under FRANME.

Currently, FRAME can only customize applications
before execution. This implies the assumption that the
computing environment does not change much such that
feasible software constraints become invalid. Nonethe-
less, future computing systems have been envisioned
as omnipresent [14], pervasive [3], and nomadic [7].
FRAME’s assumption will not be appropriate under these
environments. We plan to explore the possibility that
applications may adapt themselves to new environment
transparently at run-time. Such a run-time self-adaptive
application brings several design issues [10], such as
open or closed-adapted, type of autonomy, frequency,
and cost effectiveness. Furthermore, to specify these de-
sign decisions and reflect them into an application is a
challenge. We also plan to apply the extended frame-
work to a more complicated embedded systems such as
robots.

There are some other improvements for performance.
For instance, constraints solving is a performance bottle-
neck during component assembling. The current imple-
mentation uses a brute force algorithm to solve the con-
straints, which basically will iterate through each pos-
sible valid value of parameters to check if all the con-
straints are satisfied. We will define a clear interface
for constraint solving algorithm, so that different con-
straint solving algorithm could be implemented and be
selected by the application launcher. Furthermore, the
component assembling results may be cached. For sub-
sequence execution of the same software, it would be
possible to accelerate the assembling process by “pertur-
bating” the results, if the computing environment does
not fluctuate significantly.

References

[1]] GNU Go - GNU Project - Free Software

(2]

(3]

[4]

[5]

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

Foundation (FSF). Information available at
http://www.gnu.org/software/gnugo/.

R. Allen. A Formal Approach to Software Architecture.
PhD thesis, Carnegie Mellon, School of Computer Sci-
ence, Jan. 1997. Issued as CMU Technical Report CMU-
CS-97-144.

G. Banavar, J. Beck, E. Gluzberg, J. Munson, J. Suss-
man, and D. Zukowski. Challenges: An Application
Model for Pervasive Computing. In Proceeding of the 6
th Annual ACM/IEEE Intl Conf. Mobile Computing and
Networking (MobiCom2000), pages 266-274, Boston,
MA, Aug. 2000.

N. Brown and C. Kindel. Distributed Component Ob-
ject Model Protocol-DCOM/1.0. Information available
at http://www.microsoft.com/com.

K. I. Farkas, J. Flinn, G. Back, D. Grunwald, and J. M.
Anderson. Quantifying the Energy Consumption of a
Pocket Computer and a Java Virtual Machine. Commun.
ACM, pages 49-56, June 1998.

D. Garlan, R. T. Monroe, and D. Wile. ACME: An Ar-
chitecture Description Interchange Language. In Pro-
ceedings of CASCON’97, pages 169-183, Toronto, On-
tario, Nov. 1997.

T. Kindberg and J. Barton. A Web-Based Nomadic
Computing System. Technical Report HPL-2000-110,
HP Labs, Palo Alto, CA 94304, USA, Aug. 2000. Avail-
able at http://www.hpl.hp.com/techreports/2000/HPL-
2000-110.pdf.

F. Kon, M. Romén, P. Liu, J. Mao, T. Yamane, L. C.
Magalhdes, and R. H. Campbell. Monitoring, Security,
and Dynamic Configuration with the dynamicTAO Re-
flective ORB. In Proceedings of the IFIP/ACM Inter-
national Conference on Distributed Systems Platforms
and Open Distributed Processing (Middleware’2000),
number 1795 in LNCS, pages 121-143, New York, Apr.
2000. Springer-Verlag.

Object Management Group,
CORBA v2.2 Specification, 1998.
P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D. Rosenblum,
and A. Wolf. An Architecture-Based Approach to Self-
Adaptive Software. IEEE Intelligent Systems, 14(3):54—
62, May 1999.

A. Papazoglou. JavaGO. Information available at
http://www.papazoglou.net/go/javago.html.

D. Schmidt and C. Cleeland. Applying Patterns to De-
velop Extensible ORB Middleware. In IEEE Commu-
nications Magazine, volume 37, pages 54-63. IEEE CS
Press, Los Alamitos, Calif., 1999.

Y.-M. Wang and W.-J. Lee. COMERA: COM Exten-
sible Remoting Architecture. In Proceedings of the
4th USENIX Conference on Object-Oriented Technolo-
gies and Systems (COOTS), pages 79-88. USENIX, Apr.
1998.

M. Weiser. Some Computer Science Issues in Ubig-
uitous Computing. Communications of the ACM,
36(7):74-84, July 1993.

Framingham, Mass.

