
Adaptive Soft Real-Time Java within Heterogeneous Environments
�

Ren-Song Ko and Matt W. Mutka
Department of Computer Science and Engineering

3115 Engineering Building, Michigan State University
East Lansing, MI 48824-1226

E-mail:
�
korenson,mutka � @cse.msu.edu

Abstract

Traditional real-time software development method-
ologies require full knowledge of the resource capability
of target platforms during the development stage. How-
ever, such knowledge is not always feasible within het-
erogeneous environments. Resource heterogeneity of-
fers a new level challenge to real-time software porta-
bility, and changes in computing environments make
application behavior even more unpredictable. As a
consequence, real-time software has to probe dynam-
ically real-time capabilities to adapt itself to different
computing environments, and to respond to environment
changes. We propose an approach such that the as-
sembly of an application is postponed to execution time
so that the application may be customized by gathering
real-time capability information from the environments.
After the application is launched, it may be finely tuned
remotely by an interactive steering environment in re-
sponse to changes in the computing environment. Fi-
nally, an application, the MPEG video player, is used
to evaluate this approach under various computing en-
vironments.

1 Introduction

With the advances in hardware technology, the de-
mands increase for soft real-time capable software on
various platforms. Such demands include communi-
cation software for cellular phone and video playback
on PDAs. Traditionally, real-time software developers
make design decisions based on the best technical solu-
tion with full knowledge of resource capability of target
platforms. Through human effort and experimentation,
developers try to minimize cost while maximize perfor-
mance and compliance with real-time constraints. With
�
This work is supported in part by the National Science Foundation

under grants no. 009017, 9911074, and 9700732.

the tendency of computing environments moving toward
diversity, such a development methodology for porting
software to each platform is time and cost consuming.

While Java’s promise of “Write Once Run Any-
where” might greatly alleviate the difficulty of software
portability, it does not apply in the real-time domain be-
cause it is impossible to predict the resource capabil-
ity of so many target platforms during the development
stage. Since the correctness of the real-time software de-
pends not only on the logical result of the computation
but also on the time at which the results are produced,
two platforms with different capability may produce the
results at different times. For instance, the same appli-
cation may run perfectly on a high-end machine but fail
on a low-end machine because the results it produces
could not meet the real-time constraints. In this situa-
tion, it might be desirable to lower the quality of out-
put on a low-end platform to meet the time constraints.
Moreover, if a platform provides some special function-
ality, the performance may improve if the software has
knowledge of the functionality and may take advantage
of it. Therefore, many applications must probe dynam-
ically real-time capabilities and reconfigure to different
computing and communication environments instead of
assuming a priori knowledge of the capabilities of the
target platform. Criteria for probing real-time capabili-
ties are specified as constraints during the development
stage and the applications are built “on the fly.”

Changes in computing environments make applica-
tion behavior even more unpredictable. For instance, if
two or more simultaneous executing applications com-
pete for resources, it is impossible to guarantee that the
time constraints of real-time applications will be satis-
fied without support from the OS. For a soft real-time ap-
plication, unsatisfied time constraints might not be criti-
cal, so it is preferred to repair instead of terminating the
application.

Therefore, the following two problems must be ad-
dressed in order to achieve such a higher level perfor-

mance portability so that soft real-time software may be
executed under a heterogeneous environment with as lit-
tle human intervention as possible:

� How do applications customize themselves to a
broad range of computing environments?

� How may applications be repaired in response to
changes in computing environment?

In this paper, we address the first problem by
applying the adaptive software framework, FRAME
and CSML (Component/constraint Specification Markup
Language) to soft real-time Java applications under dif-
ferent computing environments. After the application is
executed, it may be finely tuned remotely by an interac-
tive steering environment, brew, in response to changes
in the computing environments. We use the application,
the MPEG video player, to evaluate FRAME and brew
on desktop computers with different resource capabili-
ties. Finally, the last two sections will give a summary,
survey of related work, and then discuss potential future
investigations.

2 Adaptive software framework

2.1 FRAME

FRAME [5] is a framework, based on Java techniques,
to help people develop and deploy Java applications
that can customize themselves, based on specified con-
straints, to multiple computing environments. Under
FRAME, an application should be composed of compo-
nents that are implemented Java packages and will not
be assembled until execution. Each component provides
services to cooperate with other components and con-
straints that are criteria used to assemble an application.
The application may be executed as a process on a single
machine, or distributedly on multiple machines.

As an example of FRAME, fig. 1 is the software hi-
erarchy of the MPEG video player that consists of four
components. The dependency of components is defined
via services; that is, a parent component requires ser-
vices from its child components, and vice versa. Each
component, except for the root component, might have
more than one implementation or version. Only one
version of each component is needed to execute a pro-
gram. The component dependency information needs to
be registered to a database server called the component
registry and, of course, the whole software hierarchy has
to be resolved during run-time by querying the compo-
nent registry.

In the example, component player is the root com-
ponent that needs service from its child component,

decoderplayer displayer

version: buffer

version: on-the-fly

RTOS

version: TimeSys version: dummy

Figure 1. Software hierarchy of an MPEG
video player

displayer, which in turn has two child components,
decoder and RTOS. The displayer has two dif-
ferent implementations, on-the-fly and buffer.
The former implementation will display a frame when
there is a frame decoded by the decoder. The lat-
ter implementation will buffer the decoded frames first,
and then display them later. This implementation is
suitable for a slower machine with a large amount of
memory. The component RTOS has two different im-
plementations, timesys and dummy. The timesys
implementation can only be used on the TimeSys real-
time Linux platform[13]1. It provides a CPU reserva-
tion service to guarantee quality of service provided by
the displayer and the decoder. If the underlying
OS is not a TimeSys real-time Linux, the dummy im-
plementation will be used, which does not have any per-
formance effect on the displayer and the decoder.
To simplify the example, each implementation of each
component is labelled according to table. 1.

version 1 version 2
component 1 player N/A
component 2 on-the-fly

displayer
buffer
displayer

component 3 decoder N/A
component 4 timesys RTOS dummy RTOS

Table 1. Label of each component

1Several real-time Linux operating systems are available. We chose
the TimeSys real-time Linux operating system for this example.

Since a component may have multiple versions of im-
plementation, there may be more than one possible com-
binations of components for an application. The collec-
tion of constraints of each possible combination is called
a software constraint. The software constraint of each
combination is unique; that is, the mapping of combina-
tions and software constraints is one-to-one. For exam-
ple, there are total four possible combinations of compo-
nents for the MPEG video player, corresponding to four
possible software constraints of the MPEG video player.

Before a program is executed, it needs to be assem-
bled from the feasible version of each component, in
which all the constraints of the corresponding software
constraint are satisfied. With the one-to-one property of
the combinations and software constraints mapping, the
process to find feasible components can be reduced to a
constraints solving problem in the following steps.

� Resolve the software hierarchy by querying the
component registry.

� All possible combinations will be constructed from
the software hierarchy.

� All the corresponding software constraints will be
built from the combinations.

By solving the constraints, a feasible software con-
straint, if exists, might be found, which will in turn give
the corresponding feasible combination.

2.2 Component constraints

For each implementation of a component, devel-
opers not only need to specify the services but also
the constraints. There are four different categories of
constraints that may be specified; that is, resource re-
quirements, parameters that characterize performance or
quality of implementation, internal constraint connec-
tors, and external constraint connectors.

For example, the required resource for the timesys
version of the RTOS is TimeSys real-time Linux OS.
Therefore, its resource requirement would be � “OS is
a TimeSys real-time Linux. ��� . Instead of specifying the
resource requirement, the dummy version is specified as
the “default” version of the RTOS; that is, if the required
resources of other versions are not satisfied, the default
version will be used.

For parameters, displayer component developers
may be interested in the time interval, in milliseconds,
between frames displayed and the image quality. These
two metrics could be represented by two parameters 	�
�
and 	 �� with 	�� being the � th parameter of component�
. The time interval between frames displayed might

be set between 40 milliseconds and 200 milliseconds,

and the image quality is divided into eight different lev-
els. These metrics determine the default domain of 	�
�
and 	 �� . Therefore, the collection of parameter default
domains for the both versions of the displayer are
����������	
� ��������� ���"!#�$	 �� ��%���� .

As the component dependencies are defined via ser-
vices, the parameter constraints are connected by spe-
cial constraints called internal constraint connectors and
external constraint connectors. For a component, its
parameters may be not independent. The relations be-
tween the parameter constraints within a component, by
analyzing or modeling, are specified as internal con-
straint connectors. For the component displayer, it
is obvious that a better image quality, 	 �� , will require a
longer time interval, 	&
� , to display a frame. Their pro-
portional relation may be modeled as a linear relation,' 	&
�)(!+*��,	 ��.- !+��� . Therefore, the collection of in-
ternal constraint connectors for the both versions of the
displayer are ��� ' 	&
�/(!0*��,	 ��#- !+������� .

The developers of the different components may be
interested in different performance metrics. These pa-
rameters may be dependent or independent. Also, a
parent component may need to specify the parame-
ter domain of its child components. For example, the
decoder developers may be interested in the time in-
terval, in milliseconds, between frames decoded, 	�
1 , and
the image quality, 	 �1 . Both the displayer and the
decoder may use the same metric for the image qual-
ity, i.e., 	 ��32 	 �1 , but the time to decode a frame is dif-
ferent than the time to display a frame. The relations be-
tween parameter constraints of parent and child compo-
nents are specified as external constraint connectors. For
the on-the-fly version of the displayer, a frame
is displayed when a frame is decoded by the decoder.
Hence the time to decode a frame is actually only a
fraction of the time to display a frame, and the rela-
tion between these two time intervals may be modeled
as 	
� �4	
165 ' � ; that is, once a frame is decoded, the
displayermay need extra time, no more than 70 mil-
liseconds, to display the frame. Thus, external constraint
connectors between the parameters of the displayer
with the on-the-fly version and the decoder is
���7	�
� �8	&
195 ' ���:���;	 �� 2 	 �1 ��� . On the other hand,
for the buffer version of the displayer, the de-
coded frames are buffered first and then displayed later
together. These two time intervals, 	
� and 	
1 , are irrel-
evant. However, displayer developers can specify a
constraint whether the decoder may decode frames in
some specific time interval, such as !0<��=��	>
1 �?!0����� .
The constraint reflects the fact the decoding time is not
related to the displaying time, and we would like the
decoder that can decode a frame within 1000 millisec-
onds. If decoding speed is too fast, i.e., 	 1
A@ !+<�� , then

we would not prefer to use this version. Thus, external
constraint connectors for the buffer version of the
displayer is ���0!0<�����	&
1 �B!0������� ���;	 �� 2 	 �1 ��� .

The version of the displayer that will be used de-
pends on which time constraint, 	
� �C	
1D5 ' � or !0<��E�
	�
1 �4!0����� , is satisfied. If decoding speed is fast enough,
the feasible program will use the on-the-fly version
because the first constraint would be satisfied.

2.3 Constraint specification in CSML

1 <component name="displayer" steerable="on"
2 registry-host="192.168.1.111"
3 uri="http://192.168.1.111/displayer.jar">
4 <general>
5 ...
6 <parameter name="time" id="p21" value-type="int"
7 upper="200" lower="40"> ...
8 </parameter>
9 <parameter name="quality" id="p22"

10 value-type="int" upper="8" lower="1"> ...
11 </parameter>
12 <internal-connector id="f1">
13 <from-current parameter-id="p21" alias="var1" />
14 <from-current parameter-id="p22" alias="var2" />
15 <definition>
16 return 7 * ˆvar1# - 160 * ˆvar2# >= 120;
17 </definition>
18 </internal-connector>
19 <child-component name="decoder" id="c1" ... />
20 <external-connector id="f2">
21 <from-current parameter-id="p21" alias="var1" />
22 <from-child child-id="c1" parameter="time"
23 alias="var2" /> ...
24 </external-connector>
25 ...
26 <provided-service>
27 <declaration method-name="play">
28 <argument name="args" value-type="String[]"/>
29 </declaration>
30 </provided-service>
31 ...
32 </general>
33 <customized version="on_the_fly"
34 uri="http://192.168.1.111/on_the_fly.jar">
35 <constraint-definition constraint-id="f2">
36 <definition>
37 return ˆvar1# <= ˆvar2# + 60;
38 </definition>
39 </constraint-definition>
40 </customized>
41 <customized version="buffer"
42 uri="http://192.168.1.111/buffer.jar">
43 <constraint-definition constraint-id="f2">
44 <definition>
45 return 190 <= ˆvar2# &&
46 ˆvar2# <= 1000;
47 </definition>
48 </constraint-definition>
49 </customized>
50 </component>

Table 2. CSML for component displayer

Instead of implementing them in Java code di-
rectly, developers specify services and constraints
in CSML (Component/constraint Specification Markup
Language) [5] that is an XML-based markup language.
CSML will generate a component interface and a base

class of component implementation in Java from the
specification and component developers only need to in-
herit the base class to implement the component; the in-
frastructure needed to work under FRAME is generated
by CSML.

Table. 2 is the specification of the component
displayer in CSML. The element component speci-
fies the component name (in attribute name), host-name
of component registry (in attribute registry-host), and lo-
cation (in attribute uri) in lines 1-3. Parameters are spec-
ified in element parameter, lines 6-11, with name and
their range (in attribute upper and lower). Component
dependencies are specified in element child-component.
Internal constraint connectors and external constraint
connectors are specified in element internal-connector,
lines 12-18, and external-connector, lines 20-24, respec-
tively. Their definition are specified in the form of Java
code, which should return a boolean value, i.e., true if
the constraint is satisfied. For example in line 16, the
definition of the constraint

' 	&
� (!+*��,	 �� - !+��� is speci-
fied as “return 7 * ˆvar1# - 160 * ˆvar2#
>= 120;” with var1 and var2 being aliases of
parameter time 	
� and quality 	 �� respectively. The
provided service is specified in the element provided-
service. Finally, the element general, lines 4-32, speci-
fies the information that is version independent and ele-
ment customized, lines 33-40 and lines 41-48, specifies
the version dependent information such as version num-
ber and definitions of version dependent constraints.

3 Brew

Brew is an interactive environment for collecting
performance data and repairing constraints missed ap-
plications because of changes in environments. The
overall architecture of the interactive environment is
shown in Fig. 2. The instrumentation component con-
sists of visual objects (VO) and a daemon, called ism.
The control component consists of a user interface and
RemoteController. To incorporate with the inter-
active environment, RemoteControlManager and
Instrument need to be embedded in the applications.
Furthermore, a daemon, call exs, will run concurrently
with the application.

3.1 BRISK and the visual object framework

The instrumentation component uses FHGJILK [2], an
environment for integration of tools and systems for
instrumentation, performance visualization, and analy-
sis of complex real-time systems. Two parts of F/GMILK
used are BRISK and the Visual Object Framework (VO).
BRISK uses ism and exs for communication between

JVM

command line / GUI

RemoteController VO

JVM

Java Application

RemoteControlManager Instrument

BRISK (ism)

BRISK (exs)

Network

Figure 2. Architecture of brew

applications and VOs. VO is used to develop applica-
tion specific performance visualizations, which includes
processing and rendering of instrumentation data.

Java applications may put the instrumentation data
in a shared memory by using wrapper methods in the
Instrument class, which in turn call native functions
to access BRISK. The instrumentation data is collected
by exs, and then delivered to ism, through the network.
VO then retrieves these data for visualization.

3.2 Remote controller

The control component is implemented in Java,
so the application may be “steered” anywhere
from any device regardless of its hardware ar-
chitecture and operating system. It consists of
two subcomponents, RemoteController and
RemoteControlManager.

RemoteController is the infrastructure of re-
mote controllers. Its main responsibility is to parse
the command and send the parsed information to
RemoteControlManager. Different user interfaces,
such as a command line, GUI, or Java applet under web
browser, may be used on top of RemoteController.

RemoteControlManager handles the steering
commands from RemoteController, i.e., finds
and invokes the requested methods with appropri-
ate arguments. The application need to export
the objects that would be remotely controlled to
RemoteControlManager, and then all the public
methods of the exported objects may be invoked re-
motely by RemoteController. Thus, the behavior
of the application may be changed via these public meth-
ods.

Figure 3. Frames processing time of the
MPEG player on Linux PC

4 Demonstration

4.1 Application modifications

As described in section 3, we decomposed the MPEG
player, originally developed by Joerg Anders [1], into
the component hierarchy as fig. 1. The root compo-
nent player has two parameters, the number of frames
played per second (&

) and image quality (�
), and they
are specified within the domains N O���P��RQ and NS!���%�Q respec-
tively. We made some modifications such that it may
display the frame periodically. That is, if a frame is de-
coded within a period, it will be displayed at the end
of the period; if not, the displaying will be delayed to
the end of the next period. We also embedded some
code in the application so that it could be instrumented
and steered remotely by brew. The instrumental met-
ric is the time to display a frame. The steered param-
eters are the number of frames played per second and
the quality of image. The first two experiments, which
demonstrate the different versions of displayer are cho-
sen based on the time constraint, are conducted on a
Linux PC with 900 MHz Pentium III Processor and 256
MB RAM with two different VM engines, just-in-time
(JIT) and interpreter respectively. The last experiment
demonstrates that FRAME will use the special function-
ality of the TimeSys real-time Linux.

4.2 MPEG player on JIT engine

With JIT optimization, Java VM has the ability to
decode the frame fast enough so the time constraint
	�
� �T	�
1 5 ' � can be satisfied and the on-the-fly
version of displayer component will be used. After the
components being assembled, the MPEG player begins
to execute with parameters that satisfy the software con-
straints. The value of parameter 	>

 , number of frames

Figure 4. The MPEG player is steered to
meet the time constraint

played per second, is 5 which in turn gives displaying
period 200 ms. The value of parameter 	 �
 , image qual-
ity, is 8. Fig. 3 is the screen shot of the VO for the Java
MPEG player executing on a VM with JIT engine. The
thinner line represents the time (in milliseconds) needed
to display a frame. Initially, the displaying period is
200 ms. We used brew to reduce image quality, which
reduces the time to decode a frame, and therefore we
can decrease the period to 150 ms. The variation of the
thinner line reflects such a scenario. In fig. 4, in which
the MPEG player is interfered by other applications, the
spikes of the thinner line shows that some frames may
not be decoded within one period and displaying them
needs to be delayed to the next period. Because of de-
lay, it may take up to one period, 150 ms, to display
these frames after they are decoded and the time con-
straint, �;	&
� �U	�
1V5 ' ��� , is not satisfied, which requires
that the extra time should be less than 70 ms. Thus, we
increase the period to 200 ms so that the time constraint
can be satisfied.

4.3 MPEG player on interpreter engine

We tested the same application on a Java VM with
the interpreter engine. As shown in fig. 5, we execute
the on-the-fly version. It requires about 800 ms (the
thicker line) to decode and more than 1 second to display
a frame. It does not satisfy the constraint 	>
� �U	�
1V5 ' �
but !0<��4�W	&
1 �X!0����� ; thus it will load and execute
the buffer version of the displayer component. Fig. 6
shows the time between each frame is reduced to 50 ms,
i.e., 20 frames per second. Thus, the constraints, OY�
	�

 �ZP�� , can be satisfied.

Figure 5. Frames processing time of the
MPEG player on Java VM with JIT engine

Figure 6. Frames processing time of the
MPEG player on Java VM with interpreter
engine

Figure 7. Time interval to display a frame
for the MPEG player with and without CPU
reservation

4.4 MPEG player on TimeSys real-time Linux

Finally, we demonstrate that FRAME will take ad-
vantage of special functionality of computing environ-
ments. For comparison, we had two MPEG players,[� and

[! , running on a 500MHz Celeron processor
and 128 MB RAM PC with the real-time Linux from
TimeSys simultaneously.

[� is normally executed un-
der FRAME and the timesys version is used because
the constraint, “OS is a TimeSys real-time Linux.”, is
satisfied.

[! is forced to use dummy version, so all the
real-time features are disabled. Fig. 7 shows the perfor-
mance difference for the MPEG players with and with-
out CPU reservation. The height of bars is the time be-
tween two consecutive frames.

[� has ���]\ CPU re-
served (40 ms for every 100 ms).

[! does not have CPU
reserved and has to compete for the remaining *��]\ CPU
with other applications. After launching several other
applications, the performance impact by those applica-
tions could be significant. The time between two frames
is still kept as same (100 ms) for

[� , but varies signifi-
cantly and could be up to more than 200 ms for

[! .

5 Related work

There are two groups for defining real-time Java
specification, The Real-Time for Java Experts Group
(RTEG) [11] and the Real-Time Java Working Group
(RTJWG) [12]. RTEG’s specification tends to pre-
serve compatibility with existing Java run-time seman-
tics. They intended not to support portability of real-
time Java applications because they want the difference
between underlying real-time operating systems to be
reflected at the Java level [7]. Since it is tightly coupled
with the underlying operating system, the VM has to be
re-implemented. On the other hand, RTJWG’s specifica-
tion separates VM into a baseline VM, which could be
a generic off-the-shelf VM, and a real-time core execu-
tion engine, which is portable and dynamically loadable.
More details about comparison on these two specifica-
tions can be found at [7].

Bernat et al. [3] illustrates the challenges of using
Java byte code to undertake worst-case execution time
analysis. A prototype tool is being developed that anal-
yses Java Class files and that identifies and extracts the
annotations in the Java byte code.

Reflection has been widely adopted in language de-
sign, as witnessed by the Java Core Reflection API and
its extension, such as Kava [17] and Dalang [16]. Re-
flection is also increasingly being applied to a variety of
other areas including distributed system [15] and mid-
dleware, such as COMERA [14] and DynamicTAO [6].
FRAME is a framework that provide mechanisms to exe-

cute reflective applications. CSML may help people de-
velop reflective applications, which will automatically
add reflection to applications by only specifying the high
level characteristics of components.

Program steering has been defined as the capac-
ity to control the execution of long-running, resource-
intensive programs. This may include modifying pro-
gram state, managing data output, starting and stalling
program execution, altering resource allocations etc. For
example, SciRun [9] is a scientific problem-solving en-
vironment that provides the ability to interactively guide
or steer a running computation. SciRun was designed
initially for multi-threaded shared-memory multiproces-
sors. A distributed-memory version is being produced
and threading is now used to hide latency and perform
other tasks. The distributed laboratories project [10] ad-
dresses interactivity in a computationally diverse envi-
ronment consisting of complex scientific applications,
information brokers, and client sources through light-
weight online steering and monitoring mechanisms, as
well as decision mechanisms for controlling and opti-
mizing data flow. The goal is aimed to be a distributed
computational tool and focused on low monitoring la-
tency and perturbation.

The important distinction between brew and the
above steering systems is that brew adds reflection to
the steering mechanism based on the Java Core Reflec-
tion API. It provides an interpreted language that allows
users to write scripts for more complicated application
steering.

6 Conclusion and future work

We demonstrate how the adaptive software frame-
work, FRAME and CSML, may be applied to soft real-
time Java applications under heterogeneous environ-
ment. FRAME provides the necessary APIs to allow ap-
plications to be built from constraints on the fly. FRAME
does not have run-time performance impact on applica-
tions because the assembly has finished before execu-
tion. CSML allow people to use XML to specify compo-
nent interfaces, constraints, and will generate Java code
to preserve the plug-in compatibility. The interactive
steering environment, brew, allows Java applications to
export their raw performance information to be rendered
and visualized. Users then may conclude the application
performance and repair the constraints missed applica-
tions.

Currently, FRAME can only assemble applications be-
fore execution. This implies the assumption that the
computing environment does not change much such
that the feasible software constraints become invalid
and cannot be repaired by brew. Nonetheless, fu-

ture computing systems have been envisioned as no-
madic [4]. FRAME’s assumption will not be appropriate
under these environments. We plan to extend the reflec-
tivity to dynamic environments that applications may be
re-assembled for new environment transparently at run-
time. Such a run-time reflective application brings sev-
eral design issues [8], such as open or closed-adapted,
type of autonomy, frequency, and cost effectiveness.
Furthermore, to specify these design decisions and re-
flect them into an application is a challenge.

We plan an improvement for brew. The applications
and brew form a closed loop, where the gap between
the VO and the remote controller is bridged by a human.
We plan to build a interface that allows an adaptive al-
gorithm to easily fill the gap to form a closed loop that
will automatically send a control command based on the
instrumentation results from VO. The development of
the adaptive algorithm is separated from the applications
and can be easily customized.

References

[1] J. Anders. MPEG-1-Player. Informa-
tion available at http://rnvs.informatik.tu-
chemnitz.de/˜jan/MPEG/MPEG Play.html.

[2] A. Bakić, M. W. Mutka, and D. T. Rover. Real-Time Per-
formance Visualization and Analysis Using Distributed
Visual Objects. In Proceedings of the IEEE Workshop
on Middleware for Distributed Real-Time Systems and
Services, pages 154–161, Dec. 1997.

[3] G. Bernat, A. Burns, and A. Wellings. Portable Worst-
Case Execution Time Analysis Using Java Byte Code. In
Proceedings of the 12th EuroMicro Conference on Real-
Time Systems, Stockholm, June 2000.

[4] T. Kindberg and J. Barton. A Web-Based Nomadic
Computing System. Technical Report HPL-2000-110,
HP Labs, Palo Alto, CA 94304, USA, Aug. 2000. Avail-
able at http://www.hpl.hp.com/techreports/2000/HPL-
2000-110.pdf.

[5] R.-S. Ko and M. W. Mutka. FRAME for Achieving
Performance Portability within Heterogeneous Environ-
ments. In Proceedings of the 9th IEEE Conference
on Engineering Computer Based Systems (ECBS), Lund
University, Lund, SWEDEN, Apr. 2002.

[6] F. Kon, M. Román, P. Liu, J. Mao, T. Yamane, L. C.
Magalhães, and R. H. Campbell. Monitoring, Security,
and Dynamic Configuration with the dynamicTAO Re-
flective ORB. In Proceedings of the IFIP/ACM Inter-
national Conference on Distributed Systems Platforms
and Open Distributed Processing (Middleware’2000),
number 1795 in LNCS, pages 121–143, New York, Apr.
2000. Springer-Verlag.

[7] K. Nilsen. Real-Time Core Extensions for the
Java ^L_ Platform. Available at http://www.j-
consortium.org/rtjwg/rtss.12-1-99.ppt.

[8] P. Oreizy, M. Gorlick, R. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D. Rosenblum,
and A. Wolf. An Architecture-Based Approach to Self-
Adaptive Software. IEEE Intelligent Systems, 14(3):54–
62, May 1999.

[9] S. G. Parker, M. Miller, C. D. Hansen, and C. R. John-
son. An Integrated Problem Solving Environment: the
SCIRun Computational Steering System. In 31st Hawaii
International Conference on System Sciences (HICSS-
31), volume vii, pages 147–156, Jan. 1998.

[10] B. Plale, G. Eisenhauer, K. Schwan, J. Heiner, V. Mar-
tin, and J. Vetter. From Interactive Applications to Dis-
tributed Laboratories. IEEE Concurrency, 6(2):78–89,
/1998.

[11] The Real-Time for Java ^]_ Experts Group. The
Real-Time Specification for Java. Available at
http://www.javaseries.com/rtj.pdf.

[12] Real-Time Java ^]_ Working Group. Real-Time
Core Extensions. Available at http://www.j-
consortium.org/rtjwg/rtce.1.0.14.pdf.

[13] TimeSys. Real-Time Embedded Linux. Information
available at http://www.timesys.com/.

[14] Y.-M. Wang and W.-J. Lee. COMERA: COM Exten-
sible Remoting Architecture. In Proceedings of the
4th USENIX Conference on Object-Oriented Technolo-
gies and Systems (COOTS), pages 79–88. USENIX, Apr.
1998.

[15] T. Watanabe, A. Noriki, and K. Shinbori. A Reflective
Framework for Reliable Mobile Agent Systems. In
W. Cazzola, S. Chiba, and T. Ledoux, editors, On-Line
Proceedings of ECOOP’2000 Workshop on Reflection
and Metalevel Architectures, June 2000. Available at
http://www.disi.unige.it/person/CazzolaW/ewrma2000-
proceedings.html.

[16] I. Welch and R. Stroud. From Dalang to Kava - the Evo-
lution of a Reflective Java Extension. In Proceedings of
Second International Conference on Metalevel Architec-
tures and Reflection, June 1999.

[17] I. Welch and R. Stroud. Kava - Using Bytecode Rewrit-
ing to add Behavioural Reflection to Java. In Proceed-
ings of USENIX Conference on Object-Oriented Tech-
nology, 2001.

