
Active Learning Driven Data Acquisition for Sensor Networks
Anish Muttreja†, Anand Raghunathan‡, Srivaths Ravi‡ and Niraj K. Jha†

†Dept. of Electrical Engineering, Princeton University, NJ 08544
‡NEC Labs, Princeton, NJ 08540 ∗

Abstract

Online monitoring of a physical phenomenon over a geograph-
ical area is a popular application of sensor networks. Networks
representative of this class of applications are typically operated
in one of two modes, viz. an always-on mode where every sensor
reading is streamed to a base station, possibly after in-network ag-
gregation, and a snapshot mode where a user queries the network
for an instantaneous summary of the observed field. However, a
continuum of data acquisition policies exists between these two ex-
treme modes, depending upon the rate and manner in which each
sensor node is queried. In this work, we explore this continuum to
improve network energy efficiency.

We present a data acquisition framework that models the evolu-
tion of the observed data field at each sensor location as a function
of time and uses an active learning based criterion to intelligently
sample each sensor. Sensor nodes in our framework are organized
in a clustered hierarchy. Time-dependent models of sensor read-
ings are maintained at cluster-head nodes, which sample nodes
in their cluster in a way that minimizes total energy consumption
while maintaining confidence bounds on the overall model. We use
sparse Gaussian processes to model sensor readings and variance
minimization based active learning to intelligently select sensor
nodes for querying. Finally, we present simulation results demon-
strating up to 70% savings in total network energy, compared to
the base case, in which sensors are sampled according to a cyclic
schedule.

1 Introduction
Consider a wireless sensor network measuring a data field y.

The network maintains an estimate of the field at a central base
station (S). The measured field is a spatio-temporally correlated
process, i.e., the measured value at node x at time t is correlated to
the values measured at other nodes and the previous values mea-
sured at node x. Typical examples of such a process include mea-
surements of various environmental quantities, e.g., temperature,
pressure, rainfall, particle concentrations, etc.

An important design task in the above application scenario is
the design of a data acquisition policy. Frequently, the user is
only interested in an approximation of the measured process. In
other words, most sensor network applications can accept a cer-
tain degree of distortion. Therefore, it would be redundant to ac-
quire data from all nodes at their maximum sampling capacities.
In energy-constrained sensor networks, it would also severely de-
grade network lifetime. On the other hand, arbitrarily reducing the
sampling frequency (in space or time) might lead to unacceptable
distortion in the estimate of the measured process. In this paper,
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we present a data acquisition framework that is able to make an
intelligent tradeoff between field distortion and network resource
usage. We consider the specific problem of formulating a data
acquisition schedule, in order to minimize energy consumption,
while maintaining user-specified probabilistic error bounds.

The basic principle underlying our framework is easily ex-
plained. We construct a model, f(x, t), at base station S, which
approximates the actual readings, y(x, t), at each sensor, x, at time
t. The model is used to obtain the most probable estimate ŷ(x, t)
of y(x, t) along with an estimate of the model’s certainty, cf (x, t),
that the estimate does not exceed a given error bound. Put another
way, model estimate ŷ(x, t) is considered valid at a point 〈x, t〉 if
cf (x, t) exceeds a minimum level of confidence co(x, t). A valid
model might be used directly. If the model is invalid at one or more
sensor locations, additional readings must be collected to refine it.
Intuitively, because of correlation, we do not need to sample all
nodes at any time, only enough to improve model confidence suf-
ficiently. Determining the optimal set of nodes to sample is a very
hard problem. Instead, we adopt a greedy approach, sequentially
sampling more points and refining the model until the confidence
requirement at each node is met.

In the machine learning community, the problem of sequen-
tially acquiring data in order to improve model quality with mini-
mum cost is studied under a research focus known as active learn-
ing [1, 2]. We utilize ideas from active learning to obtain a sam-
pling framework well-suited to sensor networks. We consider one-
hop as well as clustered networks and show that the framework
maps well to both topologies.

The remainder of this paper is organized as follows. We discuss
related work in Section 2 and provide motivation in Section 3. We
present our data acquisition framework in detail in Section 4 and
results in Section 5. Section 6 concludes.

2 Related Work
Data acquisition and communication mechanisms, which can

adapt to varying data characteristics in order to conserve network
resources, have received considerable attention in both sensor net-
work and streaming database research. We trace related research
in these areas. However, due to the wide range of contexts under
which the problem has been examined, this section aims only to
be representative rather than being exhaustive.

Resource management research in streaming databases has
concerned itself mainly with data filtering [3, 4, 5, 6]. As the
name suggests, data filtering techniques are aimed at conserving
network bandwidth by filtering out data that may not be relevant
in the current context. The filtering may be done at the source [7]
or within the network [6]. Lossy compression techniques for sen-
sor networks [8, 9] may also be viewed as a variant of in-network
filtering.

A characteristic of sensor networks, which distinguishes them
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from other types of streaming databases, is the high degree of cor-
relation in sensor data streams, which makes sensor data highly
amenable to data aggregation and predictive modeling techniques.
Data aggregation [10, 11, 12] refers to in-network transformation
and compression of correlated data, in order to conserve network
bandwidth and energy. Predictive modeling techniques are more
closely related to our work. Models of sensor data have been used
to make routing decisions [13], manage data acquisition [14, 15]
and regulate sampling rates at individual nodes [16, 17]. The data
acquisition framework, BBQ, which is presented in [14, 15], is
shown to perform very well on a range of approximate spatial
queries. Temporal evolution of sensor data is also supported to
an extent, but direct support for continuous data collection queries
does not seem to have been provided. BBQ seems to have been de-
signed to support the so-called snapshot mode of operation, where
either a higher application layer or the user must decide when data
needs to be collected from the network. On the other hand, con-
tinuous data collection is the focus of the work in [16, 17], where
sampling rates are adjusted according to variations in data charac-
teristics at each node. These approaches, however, do not make
use of spatial correlation which can be used to further reduce the
number of samples taken across sensors.

The broad paradigm of interleaving model-driven data collec-
tion and model refinement has also been explored in backcast-
ing [18], and subsequently in [19, 20] where Gaussian processes
and active learning techniques are utilized. All the aforementioned
works focus on deciding optimal sensor locations to sample a field
before the sensor network is deployed, whereas our work is con-
cerned with evolving a sampling strategy for an already-deployed
sensor network. The modeling methodology and active learning
heuristics used in our work are also different from previous re-
search in sensor networks.

In summary, it is our view that sensor data acquisition should
make transparent use of both spatial and temporal correlation in
sensor data. Previous work has focused either exclusively or
chiefly on only one of the space and time dimensions. In this pa-
per, we explore a framework that attempts to treat both spatial and
temporal dimensions on an equal footing.

3 Motivation
Typically, sensor deployments operate on a cyclic schedule.

Each sensor node reports data at a requested sampling rate. It is
our contention that the number of samples required can be reduced
significantly, without a significant loss in accuracy, if data acqui-
sition is managed using a spatio-temporal model such as the one
proposed here. We propose to sample each node only in response
to a fall in model confidence. To justify this hypothesis, we ap-
plied our data acquisition framework to temperature data collected
from weather buoys deployed in the Pacific ocean by the Pacific
Marine Environment Laboratory [21]. We experimented with a
400-minute long trace of temperature data collected in May 2000,
from seven weather buoys placed at 10◦ latitude intervals, along
the 110◦W longitude, from 30◦N to 30◦S. The trace contained
readings taken every ten minutes. Our interest here is to explore
whether the sampling frequency can be reduced while still main-
taining a good estimate of actual buoy readings. We constructed a
model of the temperature sensed at all buoy locations. The model
was of the form:

T = f(x, t), x ∈ {1, 2 . . . , 7} (1)

where T is the predicted temperature, x is a sensor index and t
is time. The model was initialized with a trace of ten readings,
from each of the seven sensors. As an experiment, for the next
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Figure 1. Evolution of temperature sensor model over

time

300 minutes, we fixed an ad hoc limit on sampling. During every
ten-minute interval, at most one sensor was queried from among
the seven available and the observed reading was used to update
the model. The sensor to be queried was selected according to an
active learning criterion described in Section 4.4. Post collection,
the model was used to estimate the temperature value at each sen-
sor location during the entire period. We found that even at this
drastically reduced level of sampling, a fairly accurate estimate
could be obtained.

Fig. 1 plots the cumulative percentage mean square1 model er-
ror. The figure shows the error observed in the model estimate rela-
tive to observed data during every ten-minute cycle. Time is shown
starting from the 11th cycle, which was the first cycle for which
data were not collected from every node. The error can be seen to
be at most 3.5%. Thus, for a small loss in accuracy, we were able
to reduce the number of sensor readings and associated sensing
and communication costs during this period to one-seventh of the
baseline. While the example considered in this section came from
a deployment that is of a geographical scale and much larger than
typical wireless sensor networks, it does serve to make a case for
a fine-grained adaptive data acquisition framework.

4 The Data Acquisition Framework
In this section, we discuss our data acquisition framework, be-

ginning with an overview. Key constituent parts of the frame-
work, a modeling methodology and node selection heuristics, are
described in later sections. Let X denote the set of all nodes
in the network. The centerpiece of our framework is a model
fS

τ,τ−W (x, t) of data sensed by the network. The subscript in-
dicates that the model evolves with current time τ , and is based
only upon values received at node S during the past W time units.
We assume that W has been carefully selected to ensure that the
model tracks the data stream well2. In the remainder of this paper,
we will drop the subscript and superscript with the understanding
that fS depends on current time τ and length of sliding window
W . The superscript also will only be used if the location where
the model is built is not clear from the context. Our objective is to
collect data in such a way that model f maintains a user-specified

1The absolute root mean square error was divided by the mean of all test readings
to express it as a percentage.

2A high value of W guards against noise in the estimate. However, if W is
too high, the model will not respond fast enough to changes in the data stream. In
practice, W may be selected by cross-validation.
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confidence bound, which can vary over space and time. We will
use a vector co(x, t) to denote the degree of confidence required
at node x at time t.

We further assume that nodes are sampled in cycles, each of
length tcycle. The assumption is that tcycle is the maximum tem-
poral resolution required by the application. A sensor is queried
at most once during a cycle, which is assumed to be long enough
to allow all nodes to be queried. Accordingly, we also view the
confidence requirement as a set of discrete constraints that must
be met at every sensor during every cycle.

In order to enable adaptive data acquisition, we assume that a
mechanism to selectively activate sensor nodes is available. This
might be accomplished, for example, by using a wake-up radio
similar to what is available in the PicoRadio nodes [22].3

PicoRadio nodes can be woken up individually without causing
neighboring nodes to awaken, and without incurring energy costs
for preamble processing. The wake-up beacon is modulated by
the node-id, which can be recovered using relatively simple and
low-energy front-end hardware, without awakening the complex
backend. The availability of a selective wake up mechanism al-
lows us to put nodes to sleep whenever they are not engaged in
sensing activity.

The overall sampling algorithm (Section 4.3) can now be de-
scribed. During each cycle, node S evaluates the model confi-
dence (Section 4.1) at each node. Additional readings need to be
taken only if the required confidence bound is not met. An active
learning inspired heuristic (Section 4.4) is used to select the most
valuable sensor node, which is activated to acquire a reading, and
the model is then incrementally retrained (Section 4.2) with the
acquired value. This continues until the confidence requirement
is met or all nodes are exhausted. The remainder of this section
is devoted to describing the model and the selection heuristic in
detail.

4.1 Modeling Sensor Data using Gaussian Process Regres-
sion

We begin by identifying key characteristics that our framework
requires in the model. We then present Gaussian process regres-
sion and discuss how it can be used to satisfy these requirements.
We identify three basic requirements:

1) The model must be generally applicable, i.e., it should not
assume linearity or other forms of special structure in data. It
should also provide probabilistic estimates of the modeled data
field. Gaussian process regression, as we show in this section,
meets both these requirements.

2) It should be possible to train the model incrementally with
new data, i.e., without having to redo computation for previously
seen data from scratch.

3) Efficient active sensor selection requires that it should be
possible to efficiently estimate the value or informativeness of a
new data point according to some chosen criterion. Moreover, the
estimate must be obtained without knowledge of the exact data
value being considered.

We now present Gaussian process regression. Assume that
we are given N sensor readings of the form y(x, t), x ∈
[1, Q] and t ∈ [1, P ], where x is the sensor and t is the time at
which the reading was taken. The number of available sensors is
denoted above by Q and the number of cycles over which data was
collected by P . The total number of readings N is therefore upper
bounded by the value Q × P which corresponds to an always-on
scenario. In our approach, N is typically much smaller, since only

3Other notable wake up techniques were given in STEM [23] and recently in [24].

a subset of sensors is queried in each time cycle. Then, in a Gaus-
sian process model, we assume that y is a collection of random
variables, y = (y(x1), y(x2), . . . ), which have a joint Gaussian
distribution

P (y|C,xi) =
1

Z
exp(−1

2
(y − μ)T C−1(y − μ)) (2)

for any set of inputs {xi}, where xi is a tuple of coordinates, xi =
〈x, t〉 which identifies the sensor and time at which the reading was
taken. C is the covariance matrix defined by a covariance function
C(xn,xm; Θ), parametrized by a set of parameters Θ, and μ is
the mean function. Given new coordinates x̃, the model will make
a prediction y that is Gaussian-distributed with a predictive mean
ŷ and posterior variance σy.

ŷ(x̃) = k(x̃)C−1
N y (3)

σ2
y(x̃) = C (x̃, x̃) − k(x̃)C−1

N k()x̃

where k(x̃) = (C (x1, x̃) , . . . , C (xN , x̃)) is the covariance be-
tween the training data and x̃, and CN is the N × N covariance
matrix of the training data points given the covariance function C.
For a Gaussian predictive distribution, bounding the probability of
model error exceeding a given value is equivalent to bounding the
variance. With this in mind, in the rest of the paper, a minimum
confidence requirement is sometimes called a maximum variance
requirement.

If the covariance function is suitably selected to reflect the ac-
tual covariance structure of the data, Gaussian processes can be
used to obtain probabilistic estimates of a wide variety of spatial
data. Clearly, therefore, Gaussian process regression models meet
the first of our aforementioned conditions.

4.2 Sparse Approximation for Gaussian Process Regression

Unfortunately, as defined above, Gaussian process regression
does not meet the second requirement mentioned in Section 4.1,
since training a Gaussian process is not an incremental process.
Each time the data set changes, the entire model must be relearned.
To mitigate this problem, we use a sparse online approximation to
Gaussian processes [25].

The approximation gives a model which can be trained incre-
mentally and is sparse, i.e., the final representation of the model is
much smaller than the training dataset. The origin of sparsity can
be understood by recognizing that a positive-definite covariance
function C(x1,x2) might be viewed as the inner product of so-
called feature vectors Φ(x1) and Φ(x2). Feature vector Φ(x) is a
function that maps input x to a higher-dimensional feature space.
The covariance matrix CN can thus be thought of as expressed
using dot-products of feature vectors.

Sparse approximations to Gaussian processes rely on identify-
ing a basis set that spans the feature vector space. The input vec-
tors {x1,x2 . . . ,xM} corresponding to the basis set are known as
basis vectors. Given the basis set, the entire model, including the
predictive Equations (3), can be expressed in terms of the basis
vectors, as follows

ŷ(x̃) = WT k(x̃) (4)

σ2
y(x̃) = C (x̃, x̃) − k(x̃)C−1

M k(x̃)

where k(x̃) = (C (x1, x̃) , . . . , C (xM , x̃)) is the covariance be-
tween the basis vectors and x̃, and CM is the M × M covariance
matrix of the basis vectors given the covariance function C. W is
a vector of weights that must be estimated during learning. Note
that the difference between Equations (3) and (4) is very small. Ef-
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Figure 2. Example communication schedule in a cluster

with three sensor nodes

fectively, we have used the reduced covariance matrix CM instead
of the full matrix CN and have introduced the vector of weights
W. We refer the reader to [25] for further analysis of sparse online
approximation and limit the discussion here to its consequences
for our framework, which are two-fold:

1) Sparse approximation allows incremental training and de-
training of the model. Since we only want the model to reflect data
seen during a sliding window, old data must be discarded as new
data arrive, a process we call detraining. With a sparse approxima-
tion, detraining is equivalent to deleting some basis vectors from
the model. Adding a new point to the model or removing an old
basis vector are both O(M2) operations, where M is the size of
the basis set. Moreover, the real time requirement can be bounded
by specifying the maximum number of basis vectors that the model
is allowed to have. In comparison, training a full Gaussian model
requires O(N3) operations.

2) Model sparsity also allows the model to be used as a com-
pression device. This leads to a natural extension of the data acqui-
sition framework to clustered network topologies such as that pro-
posed for LEACH [8]. Instead of maintaining a centralized model
of the entire network at S, cluster-level models are maintained at
each cluster-head. Children nodes are sampled by the cluster-head
using the sensor selection policy described in Section 4.4. Every
W time units, the entire model (basis vectors and the weights) are
reported to the base station.

A hypothetical example communication schedule is depicted in
Fig. 2. The example scenario is based on a cluster of three sensor
nodes, one of which is acting as the cluster-head. The cluster-
head maintains a sparse Gaussian process model, with a history of
length five. Fig. 2 shows five sampling cycles T, T +1, . . . , T +4.
In the first cycle, the cluster-head incrementally samples Nodes 1
and 2. The sample requests are shown as s1 and s2 in the figure.
The samples lead to a sufficient increase in confidence for cycle T
as well as the next two cycles. We assume that two cycles without
sampling is a long interval, so that it is energy-efficient to switch
off the node front-end.4 Children nodes wake up, i.e., switch their
front-end receivers on, in cycle T + 3, and Node 1 is sampled
before the network is put to sleep again. In cycle T +4, the cluster-
head transmits its data model to the base station.

4Switching off all nodes in the cluster completely requires that the sleep signal be
processed by each node. Therefore, it may not always be more energy-efficient than
just leaving the low energy front-end hardware awake. The decision will depend on
front-end and backend power consumption, as well as on the total sleep time.

4.3 The Data Acquisition Algorithm
We are now in a position to present the overall adaptive data ac-

quisition algorithm (Algorithm 1) in detail. The algorithm might
be run on the base station S, or on a cluster-head node. Next, we
describe the actions of node S during a given time cycle τ . Since
model f is maintained only for data received during a sliding win-
dow W , at the beginning of each cycle, we remove readings that
were not received during W from f . This is accomplished by a
call to subroutine RemoveOldBasisVectors in line 1 of the algo-
rithm. Line 2 is a check to see if the pruned model’s confidence
cf satisfies user requirements co. If the requirement is met, the
algorithm returns and node S waits for the next cycle. Otherwise,
in line 6, we incrementally select the best sensor x̃ and incorporate
it into the model until there is no location x ∈ X at which model
confidence does not satisfy the minimum requirement. Sensor x̃ is
selected using the ActiveSensorSelection subroutine in line 7,

following which it is removed from the candidate set of sensors X̃ .
The removal ensures that a node is sampled at most once during
a cycle. Sensor x̃ is then activated and model f is incrementally
trained with the newly acquired reading y (x̃, τ). Next, we present
our procedure to select the best sensor x̃.

Algorithm 1: Overall Adaptive Data Acquisition Algorithm

input: Current cycle τ , model f , confidence bound co(x, t),
node set X, history length W

f = RemoveOldBasisVectors(f, W );1

if cf (x, τ) ≥ co(x, τ) ∀x ∈ X then2

return;3

else4

X̃ = X;5

while ∃x ∈ X, cf (x, τ) < co(x, τ) do6

x̃ = ActiveSensorSelection(f, X̃, X);7

X̃ = X̃ \ x̃;8

f = TrainWithNewPoint(y(x̃, τ));9

end10

end11

4.4 Active Sensor Selection
During a sensing cycle t, if model confidence cf does not meet

our confidence requirement co, the current model f must be incre-
mentally updated, until the confidence requirement is met. In this
section, we concern ourselves with designing a criterion to select
the best sensor x̃ that should be incorporated in the model at each
step.

Maximizing confidence for Gaussian-distributed predictive
models is equivalent to minimizing variance. This leads to a
straightforward and popular heuristic, which is to always select the
sensor x which shows the greatest current variance σf (x, t) [26],
thereby hoping to bound the variance. This simple criterion, how-
ever, may lead to suboptimal choices in some situations since it
does not directly optimize the desired objective, which is to meet
specified variance bounds on all sensors, rather than merely mini-
mizing the maximum variance. As an example scenario, consider
two sensors a and b such that the current variance at both sensors
is equal, i.e., σy(a, t) = σy(b, t). However, b is in a region of uni-
formly high variance, whereas sensor a is displaying much higher
variance than its neighbors. This would typically indicate that the
neighborhood around b has not been sampled for some time. On
the other hand, the isolated peak of variance at a probably indi-
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cates noise or sensor failure. In such a case, sampling b might be
a better choice because it would reduce variance over the entire
neighborhood of b. Reading the value from a on the other hand
may not provide very useful information. Unfortunately, the max-
imum variance criterion does not distinguish between a and b.

An alternative selection criterion, which directly optimizes the
variance (and for non-biased models, the mean squared error), was
suggested in [1].5 One estimates the change in variance that read-
ing sensor x̃ would cause over the entire region of interest, which
is typically the entire set of nodes. We observed, however, that it
is possible to further focus sampling efforts in order to improve
accuracy, by designing a distribution of interest over the network.
This is, in our view, a major advantage of using such a heuristic.
We will come back to our design of the interest distribution later
in this section. Thus, if {ε} is the set of sensors we are interested
in, and x̃ is a sensor whose utility we wish to evaluate, we estimate
Δσy(ε) (x̃) and take an average (possibly weighted) of Δσy(ε) (x̃)
over {ε}. x̃ is selected to minimize this average. Then, a closed-
form approximation to Δσy(ε) (x̃) can be obtained.

Δσy(ε) (x̃) =

`
kMC−1

M m − C(x̃, 〈ε, t〉)´2

C (x̃, x̃) − mT C−1
M m

(5)

where x̃ = 〈x̃, t〉 and kM and m are vectors of covariances and
CM is the covariance matrix in just the basis vectors. kM and m
are defined as kM = [C(x1, 〈ε, t〉), . . . , C(xM , 〈ε, t〉)] ∈ R

M

and m = [C(x1, x̃), . . . , C(xM , x̃)] ∈ R
M . The approxima-

tion was obtained by neglecting the sparse approximation we in-
troduced in Section 4.2 and instead modeling the scenario as a full
Gaussian process. Estimating Δσy(ε) (x̃) for the sparse approxi-
mation would require estimating the value y (x̃, t) and retraining
the model with it. Since our interest in this section is only in an
approximate, but efficient, selection heuristic, this is a useful com-
promise. x̃ can be derived from:

x̃ = arg min
x̃

Eq(ε)

ˆ
Δσy(ε) (x̃)

˜
, x̃ ∈ X (6)

where q (ε) is a probability distribution, using which we can ex-
press a different degree of interest in each sensor location. This
ability to design q (ε) can be used in various ways, e.g., to balance
energy consumption across the network or increase sensing accu-
racy. In this paper, we exploit q (ε) to focus interest on sensors
that have seen unpredictable changes. While we do not have a di-
rect measure of unpredictability, an approximate measure can be
obtained by comparing actual readings at a sensor with the value
predicted by the model before the reading is incorporated into the
model. To this end, we store the last few relative error values ob-
served at each sensor ε. Relative error δ (ε, t) is obtained by di-
viding the squared error by the square of the observed sensor value
and then taking the square root:

δ (ε, t) =

s
(ŷ(ε, t) − y(ε, t))2

y2(ε, t)
(7)

If the last Wh relative error values are recorded for each sensor,
the weight q̂(ε) for each sensor is calculated as follows.6 The
probability distribution q (ε) is obtained by normalizing q̂(ε).

q̂(ε) =

WhX
j

δ(ε, t − j)

j
(8)

5Other heuristics have been suggested in [19, 20].
6A similar metric is used in [16].

We have thus obtained a selection heuristic that is driven both
by model variance and observed error.

5 Experimental Results
Since we did not have access to an actual sensor network de-

ployment, we tested our framework on simulated data. A data field
Z was generated using a Gaussian random field simulation, with
the following covariance function, adapted from [27].

E[Z(x1, y1, t1), Z(x2, y2, t2)] =

e(α((x1−x2)2+(y1−y2)2)+β(t1−t2)2)κ

(9)

where α and β are correlation coefficients along the space and
time axes, respectively, and x, y and t are space and time coor-
dinates. Results are reported for the values α = 0.5, β = 0.05
and κ = 1, which represent a field with reasonable isotropic spa-
tial correlation but little temporal correlation. The simulation was
conducted over a 10m × 10m grid for 100 time units. We used
the RandomFields [28] package for the simulation. The field was
measured by placing a sensor at the center of every grid cell.

We constructed a sparse Gaussian Process Regression model
fS of the entire field at S with history length W = 5 time units.
The model was trained for W time units and used to guide sensor
selection until the data were exhausted. We report total network
energy consumption and the estimation error for different confi-
dence requirements. Energy consumption was measured using the
LEACH extension for NS2 [29, 30].

The data acquisition framework was implemented in MAT-
LAB. We used an exponential covariance function (kernel) of the
form

C(x1, t1, x2, t2) = e(w1(x1−x2)2+w2(t1−t2)2) (10)

where, as before, x and t are the sensor index and time, respec-
tively. The model, thus, does not make use of location informa-
tion. It is possible that accuracy can be improved further by us-
ing a location-aware kernel as the covariance function. w1 and w2

are hyperparameters that were learnt during the initialization phase
by evidence maximization, as suggested in [31]. Once learnt, the
hyperparameters were not changed during the experiment. The
model was configured to have at most 50 basis vectors. The maxi-
mum limit was not met in our experiments.

We performed two sets of experiments, on a one-hop network,
where each node communicated directly with the base station, and
on a clustered topology, respectively. In each case, a base station S
was placed at the center of the field. Experiments were performed
using two uniform maximum variance thresholds, σ = 0.2 and
σ = 0.1. Data were acquired during each cycle, until the variance
at every node was less than the stipulated maximum. We report
the total network energy consumption and the observed average
test mean square error.

For the second set of experiments, with a clustered topology,
five clusters were obtained using the static clustering algorithm
(LEACH-C) [29]. A model was maintained at each cluster-head.
The maximum number of basis vectors allowed was set to one-
tenth the maximum size of the training set, i.e., Q ∗ W/10, where
Q denotes the number of nodes in the cluster and W the history
length.

In Fig. 3, a snapshot of the evolving estimate is shown. The
snapshot was taken at the 37th cycle during the simulation of the
one-hop network with σ = 0.1 and shows the original data filed,
the estimate at the base station and the error (estimated value −
original value).
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(a) Original data field (b) Estimated data field

(c) Error

Figure 3. Original and estimated data fields

In Table 1, we report the estimation error and network energy
consumption for all cases. Root mean squared error, averaged over
all cycles, is reported. The baselines correspond to every reading
being reported to the base station and thus show zero error. En-
ergy estimates were obtained using [29]. In addition to the en-
ergy values listed in [29], we assumed that in the idle mode, the
node consumes 100μW of power. In the clustered networks, the
cluster-heads communicated compressed data to the base station
once every W = 5 cycles. Since in [29], no implementation for
the compression algorithm used at cluster-head nodes is provided,
we assumed that it is at least as efficient as the model used in our
work. Thus, we assumed, that the energy spent in transmitting data
from cluster-head nodes to the base station is equal in both cases.
It can be seen from Table 1 that network energy can be reduced sig-
nificantly by using our framework while keeping distortion within
reasonable limits. The clustered topology shows somewhat higher
error than the one-hop network. This is, in all probability, due to
the models being trained over much smaller regions of the field.
Reduced training area also adversely affects the energy consump-
tion as more, possibly correlated, nodes are sampled across clus-
ters. Another possible source of error is that the choice of the
covariance function, Equation (10), was made without consider-
ing the actual covariance model. Performance can probably be
improved by using a better matched covariance function.

Table 1. Estimation error and network energy

Topology Base Active data acquisition

Energy σ Error Energy(mJ) Savings

One-hop 39.1
0.1 6% 16.7 57%

0.2 7% 11.8 69%

Clustered 20.0
0.1 8% 12.1 40%

0.2 10% 9.3 55%

6 Conclusions
In this work, we presented a model-driven data acquisition

framework that can be used to reduce energy consumption for net-
works measuring scalar fields. We presented a modeling method-
ology that can transparently exploit spatial and temporal correla-
tions. A heuristic to actively select sensor readings was also pre-

sented. An important component of the selection heuristic is the
interest distribution, which was presented in Section 4.4. We be-
lieve that a suitably-designed interest distribution can be used as a
high-level policy to obtain different network goals, for example, to
focus sampling effort on regions with unpredictable data, or bal-
ance energy consumption equally over the network, etc. We will
explore this as part of future research.
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