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Abstract 

In this paper, an anomaly detection approach that 
fuses data gathered from different nodes in a 
distributed wireless sensor network is proposed and 
evaluated. The emphasis of this work is placed on the 
data integrity and accuracy problem caused by 
compromised or malfunctioning nodes. One of the key 
features of the proposed approach is that it provides 
an integrated methodology of taking into consideration 
and combining effectively correlated sensor data, in a 
distributed fashion, in order to reveal anomalies that 
span through a number of neighboring sensors. 
Furthermore, it allows the integration of results from 
neighboring network areas to detect correlated 
anomalies/attacks that involve multiple groups of 
nodes. The efficiency and effectiveness of the proposed 
approach is demonstrated for a real use case that 
utilizes meteorological data collected from a 
distributed set of sensor nodes.  

1. Introduction 

By integrating sensing, signal processing, and 
communications functions, a sensor network provides 
a natural platform for hierarchical and efficient 
information processing. It allows information to be 
processed at different levels of abstraction, ranging 
from detailed microscopic examination of specific 
targets to a macroscopic view of the aggregate 
behavior of targets. Usually the sensors are used to 
measure and/or monitor some parameters that may 
vary with place and time. Therefore a large number of 
sensors are required in order to obtain samples of these 
parameters at different locations and times. 
Furthermore, these sensors are networked in order to 
facilitate the transmission/dissemination of the 
measured/monitored parameters to some collector sites 
where the information is further processed for decision 
making purposes [1].  

Unlike traditional wireless networks, in which the 
communication is person-to-person and the contents of 
conversations are irrelative to each other, in sensor 
networks, the data in the neighboring nodes are 

considered highly correlated since the observed objects 
in physical world are highly correlated as well [2] . 
Due to the critical nature of several applications of 
sensor networks, data integrity and accuracy problems 
that may be caused by compromised or malfunctioning 
nodes are of high research and practical importance 
[3].     

Towards that direction, in this paper, we propose and 
evaluate an anomaly detection approach that fuses data 
gathered from different nodes in a distributed wireless 
sensor network. One of the key features of the 
proposed approach is that it provides an integrated 
methodology of taking into consideration and 
combining effectively correlated sensor data, in a 
distributed fashion, in order to reveal anomalies that 
span through a number of neighboring sensors. 
Furthermore, it allows the integration of results from 
neighboring network areas to detect correlated 
anomalies/attacks that involve multiple groups of 
nodes.  

Such an approach can be used in principle to identify 
an abnormal situation in measurements (e.g. cases 
where the values of the measured or monitored 
parameters may deviate significantly from the norm) 
discover the existence of faulty sensors, detect 
potential network attacks, and filter suspicious reports 
throughout the overall decision making process.       

The remaining of the paper is organized as follows.  In 
section 2 we present some relevant background 
information and related work. The proposed data 
fusion and anomaly detection technique is introduced 
and described in detail in section 3, while in section 4 
we present some numerical results regarding the 
performance and operational effectiveness of our 
proposed anomaly detection approach for a real use 
case that utilizes meteorological data collected from a 
distributed set of sensor nodes.  

2. Background Information 

In monitoring sensor networks, data coming from 
many different streams of the sensor nodes have to be 
examined dynamically and combined into normal 
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patterns in order to detect potential anomalies. At the 
same time, to achieve cost-effectiveness and small size, 
in general the individual sensor nodes present several 
limitations, such as limited energy and memory 
resources, communication bandwidth and processing 
capabilities. Therefore, to minimize the processing and 
communication overhead of the sensors one must 
process as much of the data as possible in a 
decentralized fashion, so as to avoid unnecessary 
communication and computation effort.  

Earlier related work reported in the literature has 
focused on detecting deviations in data patterns among 
the sensors. In [4] the authors proposed a sliding-
window based spatio-temporal correlation analysis 
called “Abnormal Relationships Test (ART)” to detect 
outliers in the collected data. In [5] the authors 
described a technique for online identification of 
outliers in readings collected by individual wireless 
sensors, and attempted to extend this technique to an 
entire network of sensors, taking into consideration the 
distributed processing of events. Our approach focuses 
on the efficient detection of outliers throughout a 
sensor network in a distributed manner, and is based on 
the use of Principal Component Analysis (PCA) [6].
PCA has been shown to provide very efficient ways of 
modeling the spatio-temporal data correlations, and its 
basic principles have been used for anomaly detection 
purposes in several fields. For instance, in [7] and [8], 
techniques based on the use of PCA have been 
proposed for intrusion detection and network traffic 
anomaly detection, respectively.

3. Data Fusion and Anomaly Detection 
Approach 

3.1. System Model and Architecture 

We envision a sensor network paradigm with several 
heterogeneous sensor nodes, where each node may 
have different capabilities and execute different 
functions. For example, some nodes may have larger 
battery capacity and more powerful processing 
capability, some nodes may aggregate and relay data, 
while some others may only execute the sensing 
function and do not relay data for other nodes. 

A topology-aware algorithm that correlates metrics 
from neighboring sensors is considered, to detect the 
node(s) containing anomalies in the corresponding 
network graph. In order to decentralize the detection 
algorithm we divide the sensor network into groups. 
The division may be done either statically when the 
network is deployed, or the network may be 

dynamically rearranged periodically, if the 
environment changes. In any case, we assume that the 
division of the network into subgroups of nodes is 
based on the correlation coefficient tests among the 
nodes. The correlation coefficient RX,Y between two 
data sets X and Y is given by: 

YX
YX SS

YXCovR
⋅

= ),(
,               (1) 

where Cov(X,Y) denotes the covariance between data 
sets X and Y, while SX and SY are sample variances of 
X and Y respectively. 

Figure 1:  Sensor Network Topology and 
Architecture

Figure 1 presents the sensor network topology and 
architecture under consideration. The creation of 
groups is based on the interrelation in the 
corresponding readings of the sensors. In every group 
we assume that there is a primary node which may 
actually be more powerful and sophisticated.  
Neighboring nodes are expected to read data that are 
correlated. The primary node creates a group by 
querying all the nodes that are visible, for their recent 
readings. All nodes whose readings on the specific 
queried metric are above a predefined threshold enter 
the group. The outcome of this procedure is that the 
groups consist of nodes with interrelated readings. It 
should be noted that the various groups do not need to 
have mutually exclusive members, and therefore it is 
possible that a variant number of common secondary 
nodes may exist. Testing node readings in more than 
one group increases the probability of detecting an 
anomaly. 

Each primary node obtains sensor readings from the 
nodes in its group and performs localized real time 
analysis, as described in detail later in this section. In 
general every network node collects data with 
reference to one or more metrics that describe the 
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environmental parameters that the node monitors.  If 
the metrics of nodes are correlated, then the procedure 
may be expanded to take into consideration this 
correlation. In order to better model and represent this, 
we create a set of virtual nodes for every real node, 
with each virtual node corresponding to a different 
metric.  

The aggregated values and information about the 
anomalies are forwarded to the sink. Information about 
the anomalies may include the number and 
identification of nodes that reported faulty readings and 
the deviation of readings compared to their standard 
deviation. The sink knowing the topology of the 
network may decide whether the anomaly spreads 
within multiple groups, and whether it follows one or 
more network paths. This process could provide useful 
information for a large number of applications. For 
example, there may be an extreme natural phenomenon 
that affects the sensor readings in an area, or there 
could be a virus or a malicious node moving and 
compromising or affecting a large number of dispersed 
nodes. In either case the group(s) that reported greater 
deviations, indicate the path of the detected anomalies 
as well as the current position of the source of the 
anomaly.    

3.2. Anomaly Detection Process 

The anomaly detection procedure may be divided into 
two different parts, as displayed in figure 2: the offline 
analysis, that creates a model of the normal condition 
of the monitored parameters, and the real time analysis 
that detects anomalies by comparing the current 
(actual) with the modeled one. The input of the offline 
analysis is the correlation matrix (the diagonal matrix 
containing the correlation coefficients of all the 
monitored metrics) of a sampled data set. During the 
offline analysis, PCA is applied on this data set and 
then the first few most important derived Principal 
Components (PCs) are selected. The number of the 
selected PCs depends on the network and the number 
of virtual nodes, and it represents the number of PCs 
required for capturing the percentage of variance that 
the system needs to model its normal status. The output 
of the offline analysis is the PCs to be used in the 
Subspace Method [10]. Since this procedure is 
computationally heavy, it must be carried out only 
when there is a significant change in one or more of the 
correlation coefficients. A feasible solution is to use a 
sliding window containing the last readings and re-
estimate the PCs only when the deviation in one or 
more correlation coefficients exceeds a threshold.  

Figure 2:  High-Level Methodology 
Representation 

The goal of the Subspace Method is to divide current 
data in two different spaces: one containing readings 
that are considered normal and resemble to the 
modeled data patterns and one containing the residual. 
In general, anomalies tend to result in great variations 
in the residual, since they present different 
characteristics. During the real time analysis, the 
current data vector is projected into two different 
subspaces, with the use of the PCs estimated in the 
offline analysis (Subspace Method). When an anomaly 
occurs, the residual vector presents great variation in 
some of its variables and the system detects the path 
containing the anomaly by selecting these variables. In 
the following subsections we provide a detailed 
description of each one of the components involved in 
this overall approach. 

3.3. Combining Performance Metrics 

The goal of PCA is to reduce the dimensionality of a 
data set in which there are a large number of 
interrelated variables, while retaining as much as 
possible of the variation present in the data set [6],[9]. 
The extracted non-correlated components are called 
Principal Components (PCs) and are estimated from 
the eigenvectors of the covariance matrix of the 
original variables. 

Let the original data x be an n×p data matrix of n 
observations on each of p variables (x1, x2,…, xp), and 
let S be a p×p sample covariance matrix of x1, x2,
…,xp. If ( 1, e1), ( 2, e2),…, ( p, ep) are the p 
(eigenvalue, eigenvector) pairs of matrix S, then the i-
th PC is given by:  

zi =ei
T(x-xm)                       (2) 

Where 1 2  … p  0,  ei
T  is the i-th transposed 

eigenvector, and xm is the mean of x.
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If k is the number of nodes and l is the number of 
different metrics collected in each node, then the 
virtual nodes that represent the variables of our data set 
x, are p=l × k. Each row of this matrix is an 
observation of the monitored network in a specific time 
bin, whereas each column contains the time series for 
each virtual node. The output of PCA is a p×p matrix 
of PCs. The next step, within the overall process, is to 
select the number r (r<p) of PCs required to capture the 
percentage of variance that the system needs to model 
normal data.   

Traditionally, PCA is based on the extraction of the 
eigenvectors from the covariance matrix of a sample 
data set. Our method achieves to overcome the 
problem of different scales by utilizing the correlation 
matrix instead of the covariance matrix.  The problem 
of using PCA based on covariance matrices is that PCs 
are sensitive to large differences between the variances 
of the elements of x. Therefore in order to alleviate the 
problem of scale dependence of PCA, we used 
standardization of the virtual node variables. Each 
Principal Component can also be defined as: 

zi =esi
T x*              (3)

where esi
T is the i-th transposed eigenvector of the 

correlation matrix, and x* consists of standardized 
variables. The goal in adopting such an approach is to 
find the principal components of a standardized 
version x* of x, where x* has j-th element xj/ jj

1/2 , 
j=1,2…p, xj is the j-th element of x, and jj is the 
variance of xj. Then the covariance matrix of x* is the 
correlation matrix of x, and the PCs of x* can be 
extracted based on expression (2).

One of the main tasks in all PCA-based anomaly 
detection approaches is the choice of the number of 
PCs required to capture the percentage of variance 
desired. In our case, we need to determine the most 
suitable value of the number r of the PCs required for 
the application of the subspace method. One of the 
most common criterions for choosing r is the 
cumulative percentage of total variation [6]. An 
alternative rule, which is specific to the use of 
correlation matrices as in our case, is based on the size 
of variances of PCs. The main idea behind this rule is 
that if all elements of x are independent, then the PCs 
are the same as the original variables and they should 
all have variances equal to 1. Therefore, any PC with 
variance less than 1 contains less information than any 
of the original variables, and as a result it is not worth 
retaining. For instance, if the data set contains a group 
of variables with large within-group correlation, then 
there will be only one PC associated with this group 
whose variance is greater than 1. Thus, the rule will 

generally retain only one PC associated with that 
group.  This criterion, that in its simplest form is called 
Kaiser’s rule [6], is also chosen to be used in our 
environment, while extensive experiments have 
demonstrated its suitability and applicability.  

3.4. Subspace-based Anomaly Detection 

After having acquired the PCs and determined the 
number of PCs that will be retained, a normalized 
sample vector can be decomposed into two portions, as 
follows: 

y=ynorm +yres                                         (4) 

such that ynorm corresponds to modeled (normal) data 
and yres to the residual. We form ynorm by projecting 
y onto the normal subspace S, and we form yres by 
projecting y onto the abnormal subspace ˜S. To 
accomplish this, we arrange the set of principal 
components corresponding to the normal subspace (v1, 
v2, ..., vr) as columns of a matrix P of size p×r where r 
denotes the number of normal axes. Following this 
approach ynorm and yres can be rewritten as follows: 

ynorm = PPT y = Cy and yres = (I  PPT)y = ˜Cy            (5) 

where matrix C = PPT represents the linear operator 
that performs projection onto the normal subspace S, 
and ˜C likewise projects onto the anomaly subspace ˜S. 
Thus, ynorm contains the modeled (normal) data while 
yres contains the residual. In general, the occurrence of 
an anomaly tends to result in a large change to yres. A 
change in variable correlation will increase the 
projection of y to the subspace ˜S. Within such a 
framework a typical statistic for detecting abnormal 
conditions is the squared prediction error (SPE) [11]: 

2~2 yCySPE res =≡                               (6) 

When an anomaly occurs the SPE exceeds the 
normal thresholds and the system detects the set of 
nodes containing the anomaly, by selecting the 
variables that contribute mostly to the large change of 
the SPE. This may be realized by selecting the virtual 
nodes in the residual vector whose variation is 
significantly larger than the corresponding one under 
normal conditions. 

4. Performance Evaluation 

In this section the performance and operational 
effectiveness of our proposed anomaly detection 
approach is evaluated, for a real use case that utilizes 
meteorological data collected from a distributed set of 
sensor nodes. The data contain meteorological readings 
such as wind speed, air temperature, dew point 
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temperature and humidity from various neighboring 
ground stations in the island of Crete in Greece. In 
order to better demonstrate the improvements that can 
be achieved by the proposed methodology, we also 
present some comparative results of our approach 
against the corresponding ones that could be achieved 
by another correlation-based methodology that has 
been presented in the literature, namely the Abnormal 
Relationships Test (ART) [4] .   

4.1. Numerical Results 

  In order to better evaluate the effectiveness of the 
anomaly detection algorithm three performance metrics 
of interest were utilized: detection probability Pd, false 
alarm probability Pf and miss probability Pm. Here the 
detection probability is defined as the probability that 
the abnormal data is being detected and recognized. 
The false alarm probability is defined as the probability 
that the normal data are being classified as anomalies, 
while the miss probability is defined as the probability 
that anomaly data is failed to be recognized. A 
successful anomaly detection algorithm should achieve 
high Pd, low Pf and low Pm. Since Pd+Pm=1, we 
usually evaluate the detection algorithm performance 
by the detection probability and the false alarm 
probability. In this paper, we use the Receiver 
Operating Characteristic curve to visualize the trade-
off between the detection and false alarms probability. 
The analysis presented in this section is based on an 
extensive set of real collected temperature readings, 
where anomalies were inserted randomly in the 
corresponding data set. The readings are in time bins of 
one hour during a single day. The network was divided 
into groups of sensors reporting readings with 
correlation larger than 90%, based on the correlation 
test described in subsection 3.1. The division resulted 
into four groups with about ten nodes per group. The 
anomalies were inserted randomly in one or more 
nodes per group each time, and their magnitude varied 
from 4% to 12% of the original value.  
The corresponding numerical results are depicted in the 
ROC curves shown in the following Figures 3, 4 and 5. 
Specifically, Figure 3 displays the detection probability 
vs. the false alarm probability for two different cases: 
local detection (L.D.) versus global detection (G.D.), 
of an anomaly that occurs within a specific group. The 
two different cases refer to two different ways of 
applying our proposed anomaly detection approach. 
The global detection refers to the centralized 
application of our proposed anomaly detection 
algorithm directly on the total number of sensor nodes 
(i.e. without group division), while the local detection 
refers to the decentralized application of our approach, 
separately for each specific group of nodes, as 

described earlier in the paper. In each case, we estimate 
the achievable effectiveness for different anomaly 
magnitudes.  For each curve the point at the upper left 
corner represents the optimal detection, with high 
detection probability and low false alarm probability. 
From this figure we confirm, that the detection 
performance improves significantly by the 
localized/distributed application of our approach.  
Figure 4 displays some comparative numerical results 
for both the proposed approach and the ART approach, 
in a group of correlated nodes. The anomaly is 
randomly generated in one node of the group each 
time. Again, in each case, we estimate the effectiveness 
for different anomaly magnitudes. As observed from 
this figure, ART approach fails to detect the anomaly, 
unless it becomes significantly large, therefore limiting 
its application and effectiveness only to cases that a 
large number of nodes reports faulty values. 
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detection 
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ROC curve for different 
correlation ratios
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Figure 5: Correlation impact on detection 

Finally in figure 5 we present the impact and 
importance of the correlation among nodes of the same 
group. Larger correlation among the nodes of the same 
group may require the creation of more and smaller 
groups in the sensor network and therefore requires a 
larger number of primary nodes, however increases the 
effectiveness and accuracy of the overall detection 
process. 
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