Undergraduate Programming Languages

Fall 2000 Final Exam

Name____________Number___________

Fill in the blanks with English words (1 point each blank)

1. The 4 styles of programming are __imperative__, __object-oriented___, functional___, and _logic-based___.

2. __Pure__ Lisp has no changes of state.

3. Lisp functions are stored as __lambda__ calculus expressions.

4. The Lisp stack is called an __association___ list.

5. Lisp is _not__ typed.

6. Java is __strongly__ typed.

7. Java passes Objects to methods by _reference_.

8. Lisp passes integers by ___value__, but passes lists by __reference___.

9. J.A. Robinson invented __resolution__, which is the basis for Prolog.

10. Prolog's unique control structure called __backtracking_ allows it to find all answers for a _goal____.

11. Prolog variables must start with a __capital__ letter or an _underscore___.

12. The variable x is the same as variable X in _Lisp__, but not in _Java___.

 (Use Java, Prolog, or Lisp as answers). (It is not a variable in Prolog)

13. The Lisp function __mapcar___ will apply a function to each element of a list, and return the list of values.

14. The Lisp functional "(if x y z)" can be written as "(cond _(x y) (t z)_)."

15. Lisp one-time assignments x=5 and y=8 when evaluating x+2*y+x*y can be written as ____(let ((X 5)(y 8)) (+ x (* 2 y) (* x y)))_____.

16. The computation x=5 and y=8 when evaluating x+2*y+x*y in Prolog is written as ____X=5, Y=8, Z is X+2*Y+X*Y_____.

17. The _occurs___ check prevents X from being bound to f(X).

18. Prolog's __unification__ creates substitutions.

(15 points each)

1. Write the Java definition of a "Cons" class which has methods "getCar()", "setCar(Object)", "getCdr()", and "setCdr(Object)". Use these calls to create the list [3, 5, 7] in a main program, where these integers are of type Integer. Make sure to define NIL correctly.

class Cons extends Object

{

 private Object car, cdr;

 Cons(Object car, Object cdr) {this.car = car; this.cdr=cdr;}

 Object getCar() { return car;}

 Object setCar(Object val){car=val; return car;}

 Object getCdr() {return cdr;}

 Object setCdr(Object val){cdr=val; return cdr;}

}

class Nil extends Atom throws AccessException

{protected Nil() {}

 static public Nil nil= new Nil();

 Object getCar() {return this;}

 Object getCdr() {return this;}

 Object setCar(Object val) {throw(new AccessException);}

 Object setCdr(Object val) {throw(new AccessException);}

}

Static void main(String args[]) {

Object m=new Cons(Integer(3), new Cons(Integer(5), new Cons(Integer(7), Nil.nil)));

2. Write a Lisp function and helper functions to count the number of occurrences of a word W in a list structure (that is, a list of lists of lists...).

(defun count (w L) (cond ((atom L) (cond ((eq L w) 1) (t 0)))

 (t (+ (count w (car L)) (count w (cdr L)))))

3. Suppose that a Prolog program represents a graph by the facts of the form

Sons(Node, List_of_Sons). Write a Prolog goal to find if all of the cliques of size 3, where each of the 3 nodes of a clique is connected to the other 2 nodes.

?- sons(A,AA), sons(B,BB), sons(C,CC), member(A,BB), member(A,CC), member(B,AA), member(B,CC), member(C,AA), member(C,BB).

4. Write a Lisp function that takes a list structure containing numbers, and returns the sum of all of the numbers multiplied by their depths in the list structure. For example, the list (4 2 (5 (2 3) (6 7)) 8) should return 4*1+2*1+5*2+3*3+3*3+6*3+7*3+8*1.

(defun sums (L) (sumsHelper L 0))

(defun sumshelper (L Depth) (cond ((null L) 0)

 ((atom L) (* Depth L))

 (t (+ (sumshelper (car L) (+ Depth 1))

(sumshelper (cdr L) Depth)))))

5. Write a Prolog program which finds the cheapest flight path between two cities. Let your database contain facts of the form "flight('City1','City2', Cost)". Be sure to check for flight paths that include transfers through other intermediate cities.

This is the famous "shortest path in a weighted graph" problem. We will use a simple depth-first search algorithm with backtracking, using the list "seen" to check for loops. We will record the minimum in a global variable.

 :- dynamic bestSoFar/1.

 ?- assert(bestSoFar(1000000000)).

 findPath(X,Y.C) :- helper(X,Y,[],0,C).

 helper(X,X,_Seen,Cost,C) :- bestSoFar(C), Cost<C, !, retract(bestSoFar(C)), assert(bestSoFar(Cost)).

 helper(X,X,_, _, _) :- !.

 helper(X,Z,Seen,Cost,C) :- bestSoFar(D), Cost<D, flight(X,Y,E),

 not(member(Y,Seen)), F is Cost+E, helper(Y,Z,[X|F],C).
