
Regular Language to NFA

1. Regular Expression NFA

a. Derivatives are backward edges of NFA

b. Thompson construction:

a a

1. concatenation of machines

MN M N

2. union–four epsilon edges

M | N M

 

 N 

N
M



3. Kleene star M*



M








NFA to a DFA
Subset Construction Algorithm

• An NFA is inefficient to implement directly.

Therefore convert to a DFA that recognizes

the same strings.

• Subset Construction Algorithm:

1. NFA can be in multiple states

simultaneously.

2. Each DFA state corresponds to a distinct set

of NFA states.

3. n-state NFA may be 2n state DFA in worst

case.



NFA to DFA Example

Subset Construction Algorithm

_

0-9 

0-9



1 2 3

_

0-9

0-9
{1,2}

{2}

{3,4}

4

0-9



Regular Expression to NFA

Using Thompson Construction

a (ba) * b

NFA to DFA








b a
1 2 3 4

5

a

0

{ 0 }
A

{1,2,5}
B

{3,6}
C

{2,4,5}
D

a b a

b

b

6



Minimized DFA

Step 1: Final vs. non-final states

Step k–Separate (partition) those states which go

to different partitions on a given input

(e.g. A and dead go to different partitions on “a”)

C
A B D dead

b

a,b

a

b

B,D
A

a

dead

a

b
a

a,b

C



Programming Homework #1 Scanner

Due March 20, 2008

• Create a lexical analyzer (scanner) for the

MiniJava language (in the Appendix). Print the

lexemes for the sample program on page 486.

You will be building a compiler for MiniJava

using one of these tools:

1. SableCC–an LALR(1) tool (builds AST–

abstract syntax tree for visitor design

pattern)

2. JavaCC–an LL(1) tool with lookaheads

(uses JJTree to build the parse tree)

3. JLex and Cup LALR(1) (build your own

parse tree) (You can also choose JFLEX)

Available fromAppel’s website.

http://www.cs.princeton.edu/~appel/modern/



HW #1 (continued)
•Your scanner may not assume any limits on the lengths

of identifiers, strings, integers, comments, etc.

Additionally, care must be taken to ensure that the values

of integers are numerically accurate and that errors such

as numeric overflow are detected.

Encountering an error, your scanner must print an

informative error message and then exit immediately.

•Your scanner must be able to detect erroneous

double-quoted strings which fail to have a terminating

double quote prior end-of-line. Similarly, your scanner

must be able to detect erroneous comments which fail to

have terminating */ prior to end-of-file.



MiniJava Language
Lexical Specification
During lexical analysis, characters in MiniJava source text

are reduced to a series of tokens. The MiniJava compiler

recognizes five kinds of tokens: reserved words, identifiers,

integer literals, operators, and separators. Comments and

white spaces such as blanks (spaces), tabs, and line feeds

are not tokens and will be discarded.

•Comments

Comments start with /* and end with */ and may be

nested.

/* this /* is /* a */ comment */ line */

// This is also a comment


