1.1 Language Processors

SOUTCEe Prograr

+

Compiler

'

target prograimm

input —s Target Program [— output

] ' Figure 1.2: Running the target program
Figure 1.1: A compiler

1.1 Language Processors

source program —=
Interpreter = output

input —

Figure 1.3: An interpreter

source prograi

Translator

'

intermediate program —m

Virtual

A output
Machine p

input —e

Figure 1.4: A hybrid compiler

Language Processors

source prograi

Preprocessor

modified source program

Compiler

f

target assembly program

Assembler

relocatable machine code

'

Linker/Loader |-—

'

target machine code

library files
relocatable object files

The Structure of a

Compiler
l
Source program ~
Compiler —
i
N

Target program

Source frogram

Analysis

Synthesis

The Structure of a Compiler

chitracter stream

’ Lexical Analvzer }

token stream

Syntax Analyzer

|
svntax tree

Y

Semantic Analvzer

syntax free

'

Symbol Table Intermediate Code Generator

T
intermediate representation

Machine-Independent
Code Optimizer

imtermediate represeniation

!

Code Generator

=
target-machine code

Machine-Dependent
Code Optimizer

target-machine code

Formal Languages - Introduction
>What is alanguage?
> Language Related Problems

> Definition: How do we define alanguage?

(Remember, there are an infinite number of possible Java
programs.)

> Recognition: How do we verify that a given input
IS in agreement with a given language definition?
(Recognition ! yes/no)

> Parsing. Recognition + building an internal
representation.

(e.g. token sequences and syntax trees.)

Theory: Formal Languages

A formal language is defined in terms of:

> Symbols. the smallest identifiable units

> Alphabet X : afinite non-empty set of symbols
> Strings: astring (or word) over X isafinite
sequence of symbols from X

Examples

> a, ba, and abba are strings over the alphabet

> ={a, b} with symbolsaandb.

> Any binary number is a string over the al phabet
> ={0, 1} with symbols0 and 1.

> The length of a string x, denoted x|,

IS the number of symbolsin x.

> Example: x = abba-2> [x| =4

> The empty string ¢ isa special string with length
zero, i.e. g =0

> The concatenation of two strings x and y over %,
denoted xy, isanew string formed by appending y
to X.

> Example: x = ab, y = ba—-> xy = abba

>Note, VX X =¢gXx =Xe

I.e. ¢ istheidentity element under concatenation.

Lexical Analysis

(Performed by the Scanner)
Symbol
Table
Lexica Parsing
J| | Andysis g >
Tokens /

Parse Tree

> Read the input characters, identify atomic
|language constructs, and produce as

output a sequence of tokens.

Secondary Tasks

> Remove whitespace and comments.

> Update the symbol table

> Report lexical errors

Lexical Analysis
 The lexical analyzer reads the stream of
characters making up the source program
and groups the characters into meaningful
sequences called lexemes.
 For each lexeme, the lexical analyzer
produces as output a token of the form

(token-name, attribute-value).

position = initial + rate * GO

'

! Lexical Analvzer |

'
{id, 1} {=) (id, 2) (+) {id, 3} {*) {60}
1

| Syntax Analyvzer |

_
Gd,17 T+
* p— T
1 | position| --- {id. 2} '
2 [initial | .- tid, 37 60

4 | rate

| Semantic Analyzer

- -

- -\-‘-\-\'\-\.__
$YMBOL TABLE {dJri +

.
{id.fi}‘f inttofloat
1 60
| Intermediate Code Generator |

tl = inttofleat (60)
t2? = id3d *= t1
t3 1id2 + 32
idl = t3
1

Code Optimizer

tl = id3 * 60.0
idl = i1d2 + tl

| Code Generator

'

LDF R2, id3

MULF R2, R2, #60.0
LDF R1, id2

ADDF R1, R1, R2
STF id1, Ri

Syntax Analysis

 The second phase of the compiler is
syntax analysis or parsing.

 The parser uses the first components of
the tokens produced by the lexical
analyzer to create a tree-like
Intermediate representation that
depicts the grammatical structure of the

token stream.

Semantic Analysis

« The semantic analyzer uses the syntax tree
and the information in the symbol table to
check the source program for semantic
consistency with the language definition.

« |t also gathers type information and saves it
in either the syntax tree or the symbol table,
for subsequent use during
intermediate-code generation.

« Coercions

Intermediate Code Generation

 In the process of translating a source
program into atarget code, a compiler
may construct one or more
Intermediate representations (IRs),
having a variety of forms.

— Syntax trees: commonly used
during syntax and semantic
analysis

— After syntax and semantic analysis,
compilers generate an explicit
lower-level or machine-like IR, a
program for an abstract machine.

— Three-address code

(quadruples, triples, indirect triples)

Code Optimization
 The machine-independent code
optimization phase attempts to improve
the intermediate code so that better

target code will result.

Code Generation

« The code generator takes as input an
Intermediate representation of the
source program and maps it into the
target language.

 If the target language is machine code,
registers or memory locations are
selected for each of the variables used
by the program.

 Then the intermediate instructions are
translated into sequence of machine

Instructions that perform the same task.

Some Compiler Construction Tools

« Some commonly used compiler-construction tools
include
1. Parser generators
« Automatically produce syntax analyzers from
a grammatical description of a PL.
2. Scanner generators
* Produce lexical analyzers from a
regular-expression description of the tokens
of alanguage.
3. Syntax-directed translation engines
* Produce a collection of routines for walking a
parse tree and generating intermediate code.
4. Code-generator generators
* Produce a code generator from a collection of
rules for translating each operation of
intermediate language into the machine
language for the target language.
5. Data-flow analysis engines
« Facilitate the gathering of information about
how values are transmitted from one part of a
program to each other part. Key part of code
optimization.
6. Compiler-construction toolkits
* Provide an integrated set of routines for
constructing various phases of a compiler.

Applications of Compiler Technology

Implementation of high-level programming languages
(1.5.1)
Optimizations for computer architectures (1.5.2)
— Parallelism
— Memory hierarchy
Design of new computer architecture (1.5.3)
— RISC
— Specialized architectures
Program translation (1.5.4)
— Binary translation
— Hardware synthesis
— Database query interpreters
— Compiled simulation
Software productivity tools (1.5.5)
— Type checking
— Bounds checking
— Memory-management tools

Some Programming Languages Basics

* The static/dynamic distinction (1.6.1)

— If alanguage uses a policy that allows the compiler
to decide an issue, then we say that the language
uses a static policy or that the issue can be decided
at compiler time.

— A policy that only allows a decision to be made
when we execute the program is said to be a
dynamic policy or require a decision at run-time.

— Scope of declaration

« Static scope or lexical scope
« dynamic scope

1.6 Programming Language Basics

Environments and states (1.6.2)

environment state
f/——___
names locations values
(variables)

Figure 1.8: Two-stage mapping from names to values

it 23 /* global i */
;f.o.id £~ {

int i; /* local i */

i= 3; /*use of local i */
}

x=1i+1; /* use of global ¢ */

Figure 1.9: Two declarations of the name i

1.6 Programming Language Basics

main() {
(int a = 1; B,
int b = 1;
{
[int b = 2; B,
] { _ -
7int a = 3; B:;}
_cout << a << b;
i DECLARATION | SCOPE
(int b = 4; B-I] 3:11113 a=1; B, — By
Lcout << a << b; | int b = 1; B, — B,
} int b = 2; By — By
cout << a << b; int a = 3; Bs
¥ int b = 4; B

cout << a << b;

Figure 1.10: Blocks in a C+4 program

« Explicit access control (1.6.4)

— Through the use of keywords like
public, private, and protected, OO
languages such as C++ or Java
provide explicit control over access

to member names in a superclass.

 Dynamic scope (1.6.5)
— ause of name x refers to the
declaration of x in the most recently
called procedure with such a

declaration

When x.m() is executed it depends
on the class of object denoted by x
at that time.
« A typical example
— There is a class C with a
method m().
— Dis asubclass of C, and D
has its own method named
m().
— There is a use of m of the
form x.m(), where x is an

object of class C.

« Parameter passing mechanisms (1.6.6)
— call-by-value
— call-by-reference
— call-by-name
— call-by-text-substitution
— call-by-value-result
« Aliasing (1.6.7)

Regular Expressions

* Regular expressions represent
languages.

» Languages are set of strings.

* Tokens can be described as
regular expressions.

Regular expression

Language

(@) {"a’}
@ () {"a","b"}
@) {"ab"}

(a)* {“(or €), “a”, “aa”, ...}

(a)+ {“a’, "aa’, ... }

More Examples
Regular expression

Language

(a)? {"a", ¢}

digit=[0-9] {“07, “17, “2", ... }

posint={digit}+ {“3”, “56", “097, ... }

int="-"?{posint} {“-327, “1024", ...}

real={int}’.(¢ |{posint})
{“-1.27,1.27,"12.7, ...}

[a-zA-Z_][a-zA-Z0-9 |* all identifiers

[*a-z] one char not from a-z

. any single char except \n

Warm-Up Exercise
Recognizer
Construction

1. Become familiar with the Java language.

a. Download Java J2SE from
http://java.sun.com/

b. Follow the instruction to install the Java
compiler environment on the computer you will
be using.

2. You are to read Section 2.4 first, and write a
program to execute on a number of strings. For
each string, it should print either “accept’or

“reject”.

HW #1 Sample Test
Data

a* ; a|b;

, accept ; reject
a; accept a; accept
b; reject b; accept
ab; reject
(alb)*abb(ale);
abba; accept
babb; reject
aabba; accept
bbaabb; reject
babbab; reject

(alc)*(ble)(alc)*;
b; accept

aabb; reject
abca; accept

How to Break up
Text?

* If8 222 1f8 or if and 8

o if 89 27272 identifier or
reserved word If

* Regular expression alone
IS not enough.

» Disambiguation rules:

1. Longest matching token.

2. Ties resolved by priorities.

Recognizers

* Regular expressions describe the
languages that can be recognized by finite
automata.

 Translate each token’s regular expression
Into a non-deterministic finite automaton
(NFA).

» Convert the NFA into an equivalent DFA.

» Minimize DFA (to reduce # of states).

Recognizers (cont)
« Advantage: DFA is efficient

for iImplementation.

* Look up next state using
current state &
look-ahead character.

Regular
Expression to NFA

2[0-9]+ or (-|€)[0-9][0-9]*
: 0-9
E 0-9 E

NFA: multiple arcs may have the same
labels,

E transitions do not eat input.

More NFA'’s

What about the regular
expression (a|b)*abb?

1.State start has € transition

alb

to sl.
2. State s1 has multiple
transitions on a.

Different Definition

for Accept
A NFA accepts a string X If

and only If there Is some

path through the transition
graph from the start state to
an accepting state such that

the labels along the edges

spell x.

NFA to Minimized DFA

2

0-9

0-9

- Arc’s may not conflict,
no ¢ transitions.

NFA’s versus DFA’s
* DFA is a special case of NFA

1. No € transition.

2. Single-valued transition function.
* DFA can be simulated on a NFA.
* NFA can be simulated on a DFA
1. Simulate sets of simultaneous
states.

2. Possible exponential blowup.

Lecture 2: Lexical Anahyais A Prueli

Interface to Lexical Analyzer

« Either: Convert entire file to a file of tokens
e Lexical analyzer is a separate phase
e Or: Parser calls lexical analyzer to get next token

e This approach avoids extra I/O

e Parser builds tree incrementally, using successive
tokens as tree nodes

Honors Compilers, NYL, Spring, 2007 36

Lecture 2: Lexical Anahyais A Prueli

Relevant Formalisms: Regular Languages

¢ Can be defined in terms of

e Regular (Right Linear, Type 3) Grammars
e Regular Expressions

¢ Finite State Machines (Automata), non-deterministic
and deterministic

» Allthese characterizations are equivalent in expressive
power

e Useful for compiler construction, even if hand written

Honors Compilers, NYL, Spring, 2007 37

Lecture 2: Lexical Anahyais A Prueli

Regular (Right Linear) Grammars
» Regular grammars

e Non-terminals (arbitrary names)
e Terminals (characters)

e Productions limited to the following:
e Non-terminal — terminal
e Non-terminal — terminal Non-terminal
e Treat character class (e.g. digit) as terminal
e Regular grammars cannot count (except modulo) or
express size limits on identifiers, literals
e Cannot express proper nesting (parenthesis)

e Can be generalized by allowing terminal® instead of
a single terminal

Honors Compilers, NYL, Spring, 2007 38

Lecture 2: Lexical Anahyais A Prueli

Regular Grammars

e Grammar for real literals with no exponent

REAL = digit REAL1
REAL1 = digit REAL1 (arbitrary size)
REAL1 = . INTEGER

INTEGER := digit INTEGER (arbitrary size)
INTEGER := digit
digit = 0]1]2|3|4|5|6|7|8]|9

e Start symbol is REAL

Honors Compilers, NYL, Spring, 2007 39

Lecture 2: Lexical Anahyais A Prueli

Regular Expressions

» Regular Expressions (RE) defined by an alphabet
(terminal symbols) and three operations

e Character a foreverya e ¥

e Alternation R | Ry

e Concatenation R, R,

e lteration R* (zero or more R's)

e Language of RE’s = Language of Regular Grammars

e Regular expressions are more convenient for some
applications

Honors Compilers, NYL, Spring, 2007 40

Lecture 2: Lexical Anahyais

Specifying RE’s in Unix Tools

Honars

e Alternation

e Any character
e Repetitions

e Concatenation
e Optional RE

Compilers, NYL, Spring, 2007

A Prueli

Single characters a b ¢ d |\

[bcd] [b-z] abjed [}]
(period)

XY+

abc[d-q]

[0-9]+(\.[0-9]x)?

41

Lecture 2: Lexical Anahyais A Prueli

Finite State Machines

e A language defined by a grammar is a (possibly
infinite) set of strings

« An automaton is a device that determines, by reading
a string one character at a time, whether the strong
belongs to a specified language

e Afinite state machine (FSM, NFA) is an automaton that
recognizes regular languages (reqular expressions)

e Simplest automaton: memory is an element of a finite
set

Honors Compilers, NYL, Spring, 2007 42

Lecture 2: Lexical Anahyais A Prueli

Graphical Representation of an FSM

¢ A set of labeled states, represented as nodes in a digraph
» Directed edges labeled with a character are drawn between states
¢ One or more states designated as terminal (accepting)

¢ One or more states designated as initial

to state < if there exists an «-labeled edge connecting 5, to 5;

¢ On reading character a« < 3, automaton may move from state 5,

¢ A string belongs to the language i, after reading the string, the
automaton may mover from an initial state to an accepting state

Honors Compilers, NYL, Spring, 2007 43

Lecture 2: Lexical Anahyais A Prueli

Example: Even Numbers of a«’s and b’s

In the following diagram, we present an NFA which
recognizes the language of all strings over ¥ : {a.b}
which have an even number of a’s and b’s.

il

“C;IIII “(;lll
h [} “

y il L]
*c;III HII

1

Note that each of the states has a meaning of its own.
For example, all strings which cause the automaton to
reach state S, have an even number of «'s and an odd
number of i's.

Honors Compilers, NYL, Spring, 2007 44

Lecture 2: Lexical Anahyais A Prueli

In Mathematical Notation
An NFA (FSM) is given by a tuple A : (X, Q,Qq,0, 1), where

e > — s the alphabet (set of terminal symbols)
e () — The (finite) set of states
e ()s C) — Setofinitial states

e §:0Q =¥ — 29 — The transition function. For each ¢ = () and
a € X, d(g,a) C Q is the set of a-successors of g

e I'C (@ — Setof accepting states.

Honors Compilers, NYL, Spring, 2007 45

Lecture 2: Lexical Anahyais A Prueli

Example: The Even-a-Even-/ Automaton
For the case of the Even-a-Even-b Automaton the relevant
constructs are
e ¥ :{a,b}

e Q: {Suo, So1, 510,511}
* Qo: {Soo}
¢ The transition function ¢ is given by the table

J-qlllll l‘-.;ll | -5l||| ~{"| |

d(g,c): a {:fﬂn} {."':"||} {.‘J'nu} {:Hu}
b || {So1} | {Soo} | {511} | {S10}

. j* : { b.‘-‘| I }
Honors Compilers, NYL, Spring, 2007 46

Partition the input strings into 4 equivalence classes:

Soo — Even number of a’s and b’s -- final (accept) state
So1 — Even number of a’s, Odd number of b’s

Si0— Odd number of a’s, Even number of b’s

Si1 — Odd number of a’s and b’s

Lecture 2: Lexical Anahyais A Prueli

Runs and Acceptance

Let A : (), Qu, 0, I) be an NFA over the alphabet 3, and let
oola,..., a;, be a word (string) over . A run of A4 over o is a
sequence of states r : g5.¢1... .. qr. such that

] t}'ll % “.".}H, B.nd

® g1 € 0(g;,a;41), foreachi =10,. ... k—1.

The run r is called accepting if ;. € I'. The word o is accepted by A
if there exists a run r over =, such that r is accepting.

The language defined by A, denoted I.(4), is the set of all words
which are accepted by A.

A language L is said to be regular if there exists an NFA A, such
that L L(A).

Honors Compilers, NYL, Spring, 2007 47

Lecture 2: Lexical Anahyais A Prueli

Deterministic and Non-Deterministic Automata

An automaton A : (Q), g, d,) such that [6(g,a)| = 1 for all

g € (),a = X is called deterministic. In such a case, we refer to the
automaton as a deterministic finite automaton (DFA) and represent
the transition functionas é :) x ¥ — Q.

Non-deterministic automata (NFA’s) are often more succinct than
their deterministic counterparts.

For example, following is an NFA that recognizes the language
((aa)* + (aaa)*)b which consists of all words having a string of «'s of
length which is a multiple of 2 or of 3 followed by a .

Honors Compilers, NYL, Spring, 2007 48

Lecture 2: Lexical Anahyais A Prueli

Determinization of an NFA

Claim 1. A language L is regular iff it is recognizable by a DFA

Namely, for every NFA A : (@), Q, 0, I'), there exists a DFA
A {Q,Qo, A, Iy such that L(A) = L({A).

Define the automaton A as follows:

. (3 29 That is, a state of A is a set of A-states.
. rf"j.. ()o. The initial state of A is the set of all initial A-states.

o A(S,a) =|J,e50(q,a). The state A(S,a) contains all the A-states
which are a-successors of some state in S.

o I [S | Sn# £ (0}. Astate (set) S C @ is accepting if it contains
some accepting /A-state.

Honors Compilers, NYL, Spring, 2007 43

Lecture 2: Lexical Anahyais A Prueli

Apply to ((aa)” + (aaa)*)b

When we apply the determinization procedure to the
NFA which recognizes the language ((aa)® + (aaa)")b,
we obtain

50

Honors Compilers, NYL, Spring, 2007

Lecture 2: Lexical Anahyais A Prueli

Example: Recognizing Identifier/Integer

The following DFA recognizes (and classifies)
|dentifier/Integer

S u=fd|?

S == dlint|d

Int == dInt|d

Id == did|/1d|_U
Id == d|¢

U == did|fIld|d]| ¢

Honors Compilers, NYL, Spring, 2007 52

Lecture 2: Lexical Anahyais A Prueli

From Regular Expressions to NFA

There are several approachs to the construction of an

Automaton correpsonding to an RE. We will present one
based on the notion of a derivative.

For a regular expression K and a letter « € X, the
derivative of R relative to a, denoted % is a set of RE’s

{Ry,..., R;.} such that, for every word w € ¥,

aw € L(R) iff we L(Ri+-- -+ Ry)

Honors Compilers, NYL, Spring, 2007 53

Lecture 2: Lexical Anahyais A Prueli

Computing the Derivatives

da __ b __
- al:RJ_+R-3:I . r'_.'f?l 31'?-3
da T~ da da
o OR* __ O(RR*)
da da
dall) dbR)
. da {R} da Qj
. S((Ri+R2)R) _ O(R.R) | O(RaR)
Ja _ da a
o (R Re)R) __ (R (RaR))
dn _ da
D(R{Rg) _ d(Mi(R{Ry) | OR;
. it _ da U et

Honors Compilers, NYL, Spring, 2007 54

Lecture 2: Lexical Anahyais A Prueli

Apply to Even-a-Even-b

Consider
E = (aa+bb+ (ab+ ba)(aa+ bb)*(ab+ ba))"
Or abbreviating
= X*
X = aa+bb+ (ab+ ba)Y*Z
Y = aa-+bb Z = ab+ ba
Derivatives are
R on on
da b
X* [{aX*, bY*ZX*} | {bX*, aY*ZX*}
aX* {X*} i
bX* 0 {X*}
aY*ZX* {Y*ZX*} 0
bY*ZX* 0 {Y*ZX*}
Y*ZX* | {aY*ZX*, bX*} | {BY*ZX*, aX*}

Honors Compilers, NYL, Spring, 2007 55

Lecture 2: Lexical Anahyais A Prueli

Construct an NFA from an RE

The closure of a regular expression /7, denoted Cl 1), is the set of
expressions that arise through successive derivatives.

For example, the closure of the expression

(X :aa+ bb+ (ab+ ba)(Y : aa + bb)*(Z : ab+ ba))”
is given by the set

{X*, aX*, bX", aV"ZX" Y ZX", Y"ZX"}
We construct an NFA for expression £ as follows:

¢ States are the elements of Cl(I?)
¢ The Initial state is R
¢ The accepting states are ¢, and any state of the form /" = Cl(R

¢ For each expressions (/1" < CIR) and letter « = ¥, such that

r — 8ir

€ 5., we draw an a-labeled edge connecting [/ to V'

Honors Compilers, NYL, Spring, 2007 56

Lecture 2: Lexical Anahyais

Apply to Even-a-Even-b

From the derivative table

R w |
X {aX™, BY*ZX*} | {bX*, aY*ZX*}
aX* {X*} 0
bX™ 0 {X*}
aY*Z X" {(Y*ZX*} i
BY*Z X ||J {}'il ZXH }
Y*ZX* | {aY*ZX*, bX*} | {BY*ZX*, aX*}

we construct the following NFA:

—
[I'|'."l-E

]

{ b

- ?3/{\
“]
[‘I?J
'
"3 aV*zZ X+ e
[?L] [n. ZX]<”

Honors Compilers, NYL, Spring, 2007

States represent 6 equivalence classes of strings of a’s and b’s:
X* - even number of a’s and b’s

(193]

bX* - odd number of b’s, even number of a’s, not followed by an “a
aY*ZX* - odd number of b’s, even number of a’s, followed by an “a”
Y*ZX* - odd number of a’s and b’s

bY*ZX* - odd number of a’s, even number of b’s, followed by a “b”

aX* - odd number of a’s, even number of b’s, not followed by a “b”

A Prueli

57

Lecture 2: Lexical Anahyais A Prueli

From NFA to RE

¢ With no loss of generality, assume that the initial state is 4, and
the accepting state is either ¢, or ¢

¢ We consider generalized NFA in which there exists at most one
edge between ¢; and q;, but it may be labeled by an RE

¢ To achieve this representation, we may use the transformation
H|]r; o
1+ fa
;, -
iz

¢ Starting with g,, and going down incrementally, we successively
eliminate each of the states, using the transformation

R "’iu-‘ R
Lo e (e] —

Honors Compilers, NYL, Spring, 2007

RiR* Ry

58

Lecture 2: Lexical Anahyais A Prueli

Apply to Even-a-Even-b

Start with

Eliminate 5, to get

Honors Compilers, NYL, Spring, 2007 54

To eliminate anode, for each (in, out) pair of edges, form the regular expressions
(in out) -- no self loop

or (insef* out) -- self loop

and replace each path by an edge with the corresponding regular expression.

Lecture 2: Lexical Anahyais A Prueli

Elimination Continued

Next, we eliminate 5,, and get

Y oat+bb
-
‘NI hea

WEE b
Finally, we eliminate 5|, and obtain

I:r.'.'J - b+ I:f.'u?J | .?Jr.l:ll:r.lu | FA?J:I:E I:f.'.ill | |".lr.l:|:|

We conclude that the corresponding RE is
(aa + bb + (ab + ba)(aa + bb)*(ab + ba))*

Honors Compilers, NYL, Spring, 2007

To eliminate anode, for each (in, out) pair of edges, form the regular expressions
(in out) -- no self loop

or (insef* out) -- self loop

and replace each path by an edge with the corresponding regular expression.

Lecture 2: Lexical Anahyais A Prueli

Implementing the Scanner

+ Three Methods

e Hand-Coded approach
e Draw DFSM, then implement with loop and case
statements
¢ Hybrid approach
¢ Define tokens using reqular expressions, convert to
NFSM, apply algorithm to obtain minimal DFSM
e Hand-code resulting DFSM
e Automated approach
e Use regular expressions as input to lexical scanner
generator (e.g. FLEX)

Honors Compilers, NYL, Spring, 2007 &1

Lecture 2: Lexical Anahyais A Prueli

Automatic Scanner Construction

o FLEX builds a transition table, indexed by state and by
character.

» Code gets transition from table:

Tab: array [State, Character] of State := ...
begin
while More_Input do
Curstate := Tab[Curstate,Next_Charl];
if Curstate = Error_State
then ...
else Do_Actions(Curstate);
end while;

Honors Compilers, NYL, Spring, 2007 =]

Lecture 2: Lexical Anahyais A Prueli

Flex General Format

« Input to FLEX is a set of rules:

e Regexp actions (a C statement)
e Regexp actions (a C statement)

« FLEX scans the longest matching string

¢ And executes the corresponding actions
e Among strings of equal length, FLEX prefers the
Regexp which appears earlier in the list

Honors Compilers, NYL, Spring, 2007 &4

Lecture 2: Lexical Anahyais A Prueli

An Example of a Flex Script

DIGIT [0-9]

ID [a—z][a—z0-9]*

o!’oof’o

{DIGIT }+ {printf(“an integer %s(%d)\n",yytext,atoi(yytext));}

{DIGIT}+“"DIGIT* {printf(“a float %s(%g)\n",yytext,atof(yytext));}
if | then | begin| end | procedure | function | program
{printf(“a keyword: %s\n", yytext;}

ID {printf(“an identifier: %s\n", yytext);}
o e B {printf(“an operator: %s\n", yytext);}
‘w45 T {printf(“a separator: %s\n", yytext);}
ST /* eat up Pascal-like comments */
[‘t\n]+ /* eat white space */

. {printf(*“unrecognized character %s'\n", yytext);}
Yo%

Honors Compilers, NYL, Spring, 2007 65

Lecture 2: Lexical Anahyais A Prueli

More Properties of Regular Languages
The following claim enables us to show that a given
language is not regular.

Claim 2. [Pumping Lemmal]

For every regular language L, there exists a constant N,
such that if w € L and |w| > N, then w = xyz for some
ly| > 0 such that xy"z € L for every r > 0.

Let A : (Q.0Q,.0,F) be the DFA recognizing L. We

take N = |@)|. Assume that w = ajas---a, where
n> N. Let gp,qi,..., ¢, be the (unique) A-run accepting
w. Since n > ||, there must exist i < j such that
q; = q;. We claim that, for an arbitrary > 0, the word
ay---a;(a;1---a;)"a;y - a, belongs to L, since its run
is accepting. a

Honors Compilers, NYL, Spring, 2007 =]

Lecture 2: Lexical Anahyais A Prueli

lllustrate by Proving Irregularity

Consider the language L : {a'b' | i = 0}.

We will show that L is not reqular. Suppose L were
regular, and let V be the constant guaranteed by the
pumping lemma. Consider the word w = «”b". By the
lemma, w should be decomposable into w = zyz such
that xy"2 € L for every » > 0. By considering the three
possible cases of y having one of the forms a’.a't’. I/,
with i, j > 0, we see that xy*2 ¢ L for all three cases.
We conclude that L. cannot be regular.

Honors Compilers, NYL, Spring, 2007 70

Lecture 2: Lexical Anahyais A Prueli

Closure Properties

Regular languages are closed under the following operations on
languages:

¢ Union — For regular expressions 7, i,
LIRYUL(Ry) = L(R) + Rs).

¢ Complementation — For DFA A : (Q,Qq, 9, F),
Y — L(A) = L{Q, Qo,8,Q — F))

¢ Intersection — For languages 1., L,
L, M Ly = (L;ULy). A direct construction constructs a DFA for
L, M Ls from the DFA’s of L., and L.

¢ Reversal — By reversing a regular expression.

e Substitution — Substituting a regular language for a letter. Can
be applied to regular expressions.

Honors Compilers, NYL, Spring, 2007 71

