
1.1 Language Processors

1.1 Language Processors

Language Processors

The Structure of a
Compiler

Compiler

Source program

Target program

Analysis

Source program

Synthesis

The Structure of a Compiler

Formal Languages - Introduction

>What is a language?

> Language Related Problems

> Definition: How do we define a language?

(Remember, there are an infinite number of possible Java

programs.)

> Recognition: How do we verify that a given input

is in agreement with a given language definition?

(Recognition ! yes/no)

> Parsing: Recognition + building an internal

representation.

(e.g. token sequences and syntax trees.)

Theory: Formal Languages

A formal language is defined in terms of:

> Symbols: the smallest identifiable units

> Alphabet : a finite non-empty set of symbols

> Strings: a string (or word) over is a finite

sequence of symbols from 

Examples

> a, ba, and abba are strings over the alphabet

= {a, b} with symbols a and b.

> Any binary number is a string over the alphabet

= {0, 1} with symbols 0 and 1.

> The length of a string x, denoted |x|,

is the number of symbols in x.

> Example: x = abba |x| = 4

> The empty string is a special string with length

zero, i.e. || = 0

> The concatenation of two strings x and y over ,

denoted xy, is a new string formed by appending y

to x.

> Example: x = ab, y = ba xy = abba

> Note, x x = x = x

i.e. is the identity element under concatenation.

Lexical Analysis
(Performed by the Scanner)

> Read the input characters, identify atomic

language constructs, and produce as

output a sequence of tokens.

Secondary Tasks

> Remove whitespace and comments.

> Update the symbol table

> Report lexical errors

Form

Symbol
Table

Lexical
Analysis

Parsing

Tokens

Parse Tree

Lexical Analysis

•The lexical analyzer reads the stream of

characters making up the source program

and groups the characters into meaningful

sequences called lexemes.

•For each lexeme, the lexical analyzer

produces as output a token of the form

token-name, attribute-value.

Syntax Analysis

•The second phase of the compiler is

syntax analysis or parsing.

•The parser uses the first components of

the tokens produced by the lexical

analyzer to create a tree-like

intermediate representation that

depicts the grammatical structure of the

token stream.

Semantic Analysis

•The semantic analyzer uses the syntax tree

and the information in the symbol table to

check the source program for semantic

consistency with the language definition.

•It also gathers type information and saves it

in either the syntax tree or the symbol table,

for subsequent use during

intermediate-code generation.

•Coercions

Intermediate Code Generation
•In the process of translating a source

program into a target code, a compiler

may construct one or more

intermediate representations (IRs),

having a variety of forms.

–Syntax trees: commonly used

during syntax and semantic

analysis

–After syntax and semantic analysis,

compilers generate an explicit

lower-level or machine-like IR, a

program for an abstract machine.

–Three-address code

(quadruples, triples, indirect triples)

Code Optimization

•The machine-independent code

optimization phase attempts to improve

the intermediate code so that better

target code will result.

Code Generation

•The code generator takes as input an

intermediate representation of the

source program and maps it into the

target language.

•If the target language is machine code,

registers or memory locations are

selected for each of the variables used

by the program.

•Then the intermediate instructions are

translated into sequence of machine

instructions that perform the same task.

Some Compiler Construction Tools
• Some commonly used compiler-construction tools

include
1. Parser generators

• Automatically produce syntax analyzers from
a grammatical description of a PL.

2. Scanner generators
• Produce lexical analyzers from a

regular-expression description of the tokens
of a language.

3. Syntax-directed translation engines
• Produce a collection of routines for walking a

parse tree and generating intermediate code.
4. Code-generator generators

• Produce a code generator from a collection of
rules for translating each operation of
intermediate language into the machine
language for the target language.

5. Data-flow analysis engines
• Facilitate the gathering of information about

how values are transmitted from one part of a
program to each other part. Key part of code
optimization.

6. Compiler-construction toolkits
• Provide an integrated set of routines for

constructing various phases of a compiler.

Applications of Compiler Technology
• Implementation of high-level programming languages

(1.5.1)
• Optimizations for computer architectures (1.5.2)

– Parallelism
– Memory hierarchy

• Design of new computer architecture (1.5.3)
– RISC
– Specialized architectures

• Program translation (1.5.4)
– Binary translation
– Hardware synthesis
– Database query interpreters
– Compiled simulation

• Software productivity tools (1.5.5)
– Type checking
– Bounds checking
– Memory-management tools

Some Programming Languages Basics
• The static/dynamic distinction (1.6.1)

– If a language uses a policy that allows the compiler
to decide an issue, then we say that the language
uses a static policy or that the issue can be decided
at compiler time.

– A policy that only allows a decision to be made
when we execute the program is said to be a
dynamic policy or require a decision at run-time.

– Scope of declaration
• Static scope or lexical scope
• dynamic scope

1.6 Programming Language Basics

• Environments and states (1.6.2)

1.6 Programming Language Basics

• Static scope and block structure (1.6.3)

•Explicit access control (1.6.4)

–Through the use of keywords like

public, private, and protected, OO

languages such as C++ or Java

provide explicit control over access

to member names in a superclass.

•Dynamic scope (1.6.5)

–a use of name x refers to the

declaration of x in the most recently

called procedure with such a

declaration

When x.m() is executed it depends

on the class of object denoted by x

at that time.

•A typical example

–There is a class C with a

method m().

–D is a subclass of C, and D

has its own method named

m().

–There is a use of m of the

form x.m(), where x is an

object of class C.

•Parameter passing mechanisms (1.6.6)

–call-by-value

–call-by-reference

–call-by-name

–call-by-text-substitution

–call-by-value-result

•Aliasing (1.6.7)

Regular Expressions
• Regular expressions represent
languages.
• Languages are set of strings.
• Tokens can be described as
regular expressions.

Regular expression

Language
(a) { “a”}
(a) | (b) { “a”, “b” }
(a)(b) { “ab” }

(a)* { “”(or ε), “a”, “aa”, … }

(a)+ { “a”, “aa”, … }

More Examples
Regular expression

Language

(a)? { “a”, ε }

digit=[0-9] { “0”, “1”, “2”, … }
posint={digit}+ { “3”, “56”, “09”, … }
int=‘-’?{posint} { “-32”, “1024”, … }

real={int}’.’(ε |{posint})

{ “-1.2”, “1.2”, “12.”, … }
[a-zA-Z_][a-zA-Z0-9_]* all identifiers
[^a-z] one char not from a-z
. any single char except \n

Warm-Up Exercise

Recognizer
Construction
1. Become familiar with the Java language.

a. Download Java J2SE from

http://java.sun.com/

b. Follow the instruction to install the Java

compiler environment on the computer you will

be using.

2. You are to read Section 2.4 first, and write a

program to execute on a number of strings. For

each string, it should print either “accept”or

“reject”.

HW #1 Sample Test
Data
a* ; a|b;
; accept ; reject
a; accept a; accept
b; reject b; accept
ab; reject
(a|b)*abb(a|e);
abba; accept
babb; reject
aabba; accept
bbaabb; reject
babbab; reject

(a|c)*(b|e)(a|c)*;
b; accept
aabb; reject
abca; accept

How to Break up
Text?
• if8 ??? if8 or if and 8

• if 89 ??? identifier or

reserved word if

• Regular expression alone

is not enough.

• Disambiguation rules:

1. Longest matching token.

2. Ties resolved by priorities.

Recognizers
• Regular expressions describe the

languages that can be recognized by finite

automata.

• Translate each token’s regular expression

into a non-deterministic finite automaton

(NFA).

• Convert the NFA into an equivalent DFA.

• Minimize DFA (to reduce # of states).

Recognizers (cont)

• Advantage: DFA is efficient

for implementation.

• Look up next state using

current state &

look-ahead character.

Regular
Expression to NFA
-?[0-9]+ or (-|ε)[0-9][0-9]*

- 0-9

ε 0-9 ε
NFA: multiple arcs may have the same
labels,

ε transitions do not eat input.

More NFA’s
What about the regular
expression (a|b)*abb?

1.State start has ε transition

a | b

ε a b b

to s1.
2. State s1 has multiple
transitions on a.

Start
S2 S3 S4S1

Different Definition
for Accept
A NFA accepts a string x if

and only if there is some

path through the transition

graph from the start state to

an accepting state such that

the labels along the edges

spell x.

NFA to Minimized DFA

- Arc’s may not conflict,

no ε transitions.

0-9

-

0-9

NFA’s versus DFA’s
• DFA is a special case of NFA

1. No ε transition.

2. Single-valued transition function.
• DFA can be simulated on a NFA.
• NFA can be simulated on a DFA
1. Simulate sets of simultaneous
states.
2. Possible exponential blowup.

Partition the input strings into 4 equivalence classes:

S00– Even number of a’s and b’s -- final (accept) state
S01– Even number of a’s, Odd number of b’s
S10– Odd number of a’s, Even number of b’s
S11– Odd number of a’s and b’s

States represent6 equivalence classes of strings of a’s and b’s:

X* - even number of a’s and b’s

bX* - odd number of b’s, even number of a’s, not followed by an “a”

aY*ZX* -odd number of b’s, even number of a’s, followed by an “a”

Y*ZX* - odd number of a’s and b’s

bY*ZX* - odd number of a’s, even number of b’s, followed by a “b”

aX* -odd number of a’s, even number of b’s, not followed by a “b”

To eliminate a node, for each (in, out) pair of edges, form the regular expressions
(in out) -- no self loop

or (in self* out) -- self loop
and replace each path by an edge with the corresponding regular expression.

To eliminate a node, for each (in, out) pair of edges, form the regular expressions
(in out) -- no self loop

or (in self* out) -- self loop
and replace each path by an edge with the corresponding regular expression.

