
Semantics and Ontology Engineering

Using a Class Algebra Ontology
To Define Conversions between OWL/SQL/Java Beans

Daniel J. Buehrer and Wang Chun-Yao

Institute of Computer Science and Information Engineering
National Chung Cheng University

MinHseng Chiayi 621, Taiwan
dan@cs.ccu.edu.tw and cywang@mail.nhu.edu.tw

Abstract
 This paper describes the xml definition of class
algebra which is available at
http://xbean.cs.ccu.edu.tw/~dan/classAlgebra.xml .
A sample user-defined ontology document and
instance document are available at
http://xbean.cs.ccu.edu.tw/~dan/userOntology.xml
and http://xbean.cs.ccu.edu.tw/~dan/userInstances.xml .
The class algebra ontology is very similar to the
OWL ontology, but it uses its own definition of
pointers for non-partOf relations. This
simplifies the underlying theory as well as the
syntax. The same syntax is used to define the
ontology (i.e. the schema) as well as instance
documents. The class algebra ontology has
sufficient information to enable conversion
between class algebra instance documents, SQL
tables, and Java persistent objects, all of which
can be queried by class algebra queries and
updated by class algebra assignment operators,
RMI calls, or SOAP method calls. The state-
space graph of all possible orderings of class
algebra operators is searchable by efficient
constraint-based search techniques. Operators
include guarded class algebra assignments as
well as traditional SOAP or RMI method calls.

1. Introduction
 Implementations of the Ontology Web
Language (OWL) are now starting to appear.
There are several deficiencies of OWL that are
evident in these implementations. One major
detraction is the use of “ENTITY” definitions
within rdf:resource pointers, rather than being
able to use name space prefixes directly in the

pointers. Another problem is the rather loose
nesting of tags, with no clear definition of how
objects should be nested within relations.
Another problem is an unclear definition of how
OWL instance documents can be translated
to/from SQL and Java Beans. Finally, the OWL
ontology definition should be readable as an
OWL instance document, so that meta-objects
and meta-relations can be queried using the
same query mechanisms as for user-defined data.
User-defined ontologies are defined as
subclasses of the class algebra ontology, so they
can make use of the standard “hasNameSpaces”,
“hasClassDefns”, “hasAttributeDefns”,
“hasRelationDefns”, and “hasInstanceFiles”
relations from the ontology to its definitions.

2. PartOf Relations vs. Non-PartOf Relations
 Class algebra distinguishes between two
kinds of binary relations. PartOf relations are
aggregate relations between a whole and its
parts. The parts may either be attributes or
relations to objects whose existence depends on
the existence of the containing object. That is,
the inverse “partOf” relation for these relations
is a function, with the single surrounding object
as its value. Each object must have a unique
rdf:ID. The objects in a relation may either be
accessed directly via the rdf:ID or indirectly via
an iterator for the surrounding relation.
 All relations have a value which is a List
(i.e. all relation values are associative,
“flattened” unions (i.e. appends) of values).
There are various subclasses of relation values
defined as follows:

Functional Single-valued (cardinalty=1)
Set No repetitions; idempotent: (x&x=x)
SortedSet(attrs) x.attrs<y.attrs � before(x,y)
UndirectedGraph symmetric: (reln(x,y)�reln(y,x))
ReducedGraph transitive:

(reln(x,y)&reln(y,z)�reln(x,z)
DAG transitive, antisymmetric:

reln(x,y)�~reln(y,x)
Tree functional(inv_reln);

e.g. “partOf” relation
ReachableSet reln(x,y) & relnClosure(y,z) �

relnClosure(x,z)
reln(x,y)�relnClosure(x,y)

Leaves relnClosure(x,y) & ~(∃ z) reln(y,z) �
leaves(x.y)

 A class algebra instance document
consists of nested tags, alternating between class
names (capitalized, as in Java), and relation
names (starting with a lower-case letter, as for
Java attributes or collection names). All tags act
as constructors, constructing either a new object
or new partOf 1-m relationship edges.

Every object has an “absolute” name
which starts at a given name space prefix and
lists all dotted partOf relations, with non-
functional relations followed by a square-
bracketed rdf:ID label or subscript. The
subscript depends on the physical order of the
list of parts. For instance, the name
“hasObjects[Tom].friends[Jim].child[2].haircolo
r” refers to the hair color of one particular
person, the second child of Tom’s friend Jim.

The “short” name of an object is simply
of the form “prefix:@ClassName[rdfIDValue]”,
where ClassName must be a subclass of the
declared range of the relation in which it occurs.
“@ClassName” is actually shorthand notation
for “hasClassDefns[ClassName].extent”, the
extent (i.e. list of instances) of the class
definition.

Both absolute and short names of objects
are meaningful to both people and computers,
and any class algebra object on the network has
a unique absolute or short name after the prefix
is expanded into a URL. The name space
associated with the prefix actually may contain
many URL’s for SQL databases, XML files, or
Java serialized files, but only one of these

URL’s is the writable URL, and the others are
read-only copies.

3. OidLists
 The relation domains and ranges are
defined in the class algebra ontology. However,
relationships may relate any objects in
subclasses of those domains and ranges, and
these subclasses may be stored on different
machines in different formats. (All class
instances are restricted to be in the same
instance file). The relation values are always
oidLists, regardless of whether the relation is
stored in class algebra XML files, serialized
persistent Java beans, or SQL tables. The
oidList is a string composed of oidElements
separated by semicolons. Each oidElement has
the form prefix:@Classname[rdfIDList]. As
mentioned, the prefix is associated with a
unique “writable” file and “readable” copies in
SQL databases, class algebra XML files, and/or
Java serialized bean files. The Classname is a
subclass of both the previous relation’s range
class and the next relation’s domain class. The
rdfIDList is a list of rdf:ID values or ranges,
where the ranges depend on the physical order
of the objects in the XML file, SQL database, or
Java collection. The rdf:ID values must be
unique within the name space of the prefix, so
the Classname is theoretically redundant, but is
supplied for easy translation to SQL tables,
where each Classname is a SQL table name.
When SQL tables are translated to class algebra,
the primary keys are made unique by adding the
table name, if necessary.

4. Class Algebra Queries
 Basically, class algebra queries look like
extended OidLists. The OidLists are extended
with selections, within curly brackets. These
selections are based on Boolean combinations of
“in” containment predicates which correspond
to subclass containments or primitive value
lattice or set containments.
 Class algebra queries can also contain a
“…” operator instead of a single dot operator.

This indicates that the following query can be
nested anywhere within the partOf relations of
the current object, similar to XPath’s use of the
// operator. Also, a “*” can be used as a
wildcard that can match any relation name.
 Class algebra queries can also contain
groupBy objects and their aggregate functions,
cnt_, sum_, avg_, min_, max_, and std_. The
attribute names of a group are created by
appending the above aggregate name onto the
other numeric attribute names (i.e. those not
used in the groupBy) of the original objects.
The other non-numeric attributes and relations
only have a corresponding cnt_attrOrRelnName
attribute in the corresponding group. For
example, let the original objects are in a class
with the following attributes:
attr1:int attr2:float attr3:date attr4:Integer
attr5:Url reln1:Class1 reln2:C2
Then, the groupBy(“attr1,reln1”) query would
produce the following attributes:
attr1:int reln1:Class1 cnt_attr2 sum_attr2
avg_attr2 min_attr2 max_attr2 std_attr2
cnt_attr3 cnt_attr4 sum_attr4 avg_attr4
min_attr4 max_attr4 std_attr4 cnt_attr5
cnt_reln2

5. Class Algebra Guarded Assignments
 The selections in the above queries can
be used to select which assignments are to be
performed. Assignments have the following
form:
<class algebra query>.relnOrAttrName
<assignOp> <class algebra query>
The assignment operators are “:=”, “+=”, “-=”,
“@=”, “@+=”, and “@-=”.
For example, the assignment
 @People[Dan].friend +=
@People[George].friend{age in [21..inf]}
will explicitly add George’s adult friends to
Dan’s friends.
The assignments
 @Person{sex in [Female]}.husband @=
this.spouse
 @Person{sex in [Male]}.wife@=
this.spouse

define implicit husband and wife relations.
When the spouse changes, the corresponding
husband or wife also change.
 Guarded assignments are useful for
writing NP-complete queries, which are not
writable as simple class algebra queries. For
example, a relaxation algorithm for the graph
coloring problem could be stated as follows:
 @Node[1].colors := @Colors[Red];
 @System.backtrack:= @Boolean[false];
 @Node.colors -= neighbor{cnt(colors)
in [1]}.colors;
 @System{cnt(@Node{cnt(neighbors)>c
nt(colors)}>0)}.backtrack:=

 @Boolean[true];
//Backtrack if all nodes have at least as many
colors as neighbors
@Node.chooseOne{@System.backtrack&cnt(c
olors)=min(cnt(@Node.colors))}.colors:=
 this.colors.chooseOne �
@System.backtrack:= Boolean[false];

6. Method calls
 OWL and class algebra without
assignments basically describe data structures.
However, OWL’s n-triples can describe NP-
complete labeling problems, so some rather
sophisticated control must be used to answer
general OWL queries. Class algebra moves that
kind of control into the state-space search.
 Traditional object-oriented method calls
are generally of the form of state-space
operators. They take the input state of “this”
and transform it into a new state. The other
arguments to the method call must evaluate to
read-only constants. That is, the method call
with evaluated arguments can be used as the
name of an edge in the state-space search graph.
The search algorithm should prevent the
addition of states that are subsumed (equal to or
having more values than another state). The
state-space graph will then contain a superset of
the states reachable by communicating agents.
It simply assumes that any method can be called
at any time with any arguments. Actual
execution of the agents will only produce a

subset of these states, depending on the control
structures within the agents.

7. Summary and Conclusions
 The tree structure of XML documents
and the RDF schema definitions unnecessarily
complicate the Semantic Web. OWL is going in
the right direction, defining everything in terms
of triples, but its syntax is still awkward in
several ways. This paper has shown how some
of these drawbacks of OWL can be overcome
by class algebra XML documents. These
documents can also be translated to/from SQL
databases and Java serialized Bean files. The
class algebra ontology takes the place of XML
or RDF schemas by assuming that the Class
names and relation/attribute names will become
tag names, and that relation/attribute tags must
strictly alternate with Class tags. Every class
tag must also have an rdf:ID which is unique in
the name space. This format is used for both the
ontology definitions and the instance objects.

References
Web Services and Service-Oriented
Architectureshttp://www.service-
architecture.com/index.html

Java 2 Platform, Enterprise Edition
http://java.sun.com/j2ee/

W3C Semantic Web Activity
http://www.w3.org/2001/sw/news

W3C XML Extensible Markup Language
http://www.w3.org/XML/

W3C RDF Resource Description Framework
http://www.w3.org/RDF/

W3C OWL Web Ontology Language
Overview http://www.w3.org/TR/2003/CR-
owl-features-20030818/

M. Ahamad and M. Chelliah, “Flexible Robust
Programming in Distributed Object Systems,” IEEE
Transactions on Knowledge and Data Engineering,
Vol. 14, No. 5, Sept/Oct 2002.

D. Beneventano, S. Bergamaschi, C. Sartori,
“Description Logics for Semantic Query
Optimization in Object-Oriented Database Systems,”
ACM Transactions on Database Systems, Vol. 28,
Issue 1, March, 2003.

D. J. Buehrer, Lo Tse-Wen, Hsieh Chih-Ming,
Maxwell Hou, "The Containment Problem for Fuzzy
Class Algebra," Intelligent Engineering Systems
through Artificial Neural Networks, Volume 11, C.
H. Dagli et al. (eds.), ASME Press, New York, 2001,
pp.279-284. .

D. J. Buehrer and Lei-Ren Chien, "Knowledge
Creation Using Class Algebra," 2003 Int’l.
Conference on Natural Language Processing and
Knowledge Engineering, Beijing, China, Oct. 26-29,
pp.108-113.

D. Buehrer and Lei-Ren Chien, Reasoning with
Class Algebra", Proceedings of IASTED
International Conference on Neural Networks
and Computational Intelligence (accepted),
Grindewald, Switzerland, Feb. 23-25, 2004.

