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Abstract   
 This paper describes the xml definition of class 
algebra which is available at 
http://xbean.cs.ccu.edu.tw/~dan/classAlgebra.xml .  
A sample user-defined ontology document and 
instance document are available at 
http://xbean.cs.ccu.edu.tw/~dan/userOntology.xml 
and http://xbean.cs.ccu.edu.tw/~dan/userInstances.xml .  
The class algebra ontology is very similar to the 
OWL ontology, but it uses its own definition of 
pointers for non-partOf relations.  This 
simplifies the underlying theory as well as the 
syntax.  The same syntax is used to define the 
ontology (i.e. the schema) as well as instance 
documents.  The class algebra ontology has 
sufficient information to enable conversion 
between class algebra instance documents, SQL 
tables, and Java persistent objects, all of which 
can be queried by class algebra queries and 
updated by class algebra assignment operators, 
RMI calls, or SOAP method calls.  The state-
space graph of all possible orderings of class 
algebra operators is searchable by efficient 
constraint-based search techniques.  Operators 
include guarded class algebra assignments as 
well as traditional SOAP or RMI method calls. 
 
1. Introduction 
   Implementations of the Ontology Web 
Language (OWL) are now starting to appear.  
There are several deficiencies of OWL that are 
evident in these implementations.  One major 
detraction is the use of “ENTITY” definitions 
within rdf:resource pointers, rather than being 
able to use name space prefixes directly in the 

pointers.  Another problem is the rather loose 
nesting of tags, with no clear definition of how 
objects should be nested within relations.  
Another problem is an unclear definition of how 
OWL instance documents can be translated 
to/from SQL and Java Beans.  Finally, the OWL 
ontology definition should be readable as an 
OWL instance document, so that meta-objects 
and meta-relations can be queried using the 
same query mechanisms as for user-defined data.  
User-defined ontologies are defined as 
subclasses of the class algebra ontology, so they 
can make use of the standard “hasNameSpaces”, 
“hasClassDefns”, “hasAttributeDefns”, 
“hasRelationDefns”, and “hasInstanceFiles” 
relations from the ontology to its definitions. 
 
2. PartOf Relations vs. Non-PartOf Relations 
 Class algebra distinguishes between two 
kinds of binary relations.  PartOf relations are 
aggregate relations between a whole and its 
parts.  The parts may either be attributes or 
relations to objects whose existence depends on 
the existence of the containing object.  That is, 
the inverse “partOf” relation for these relations 
is a function, with the single surrounding object 
as its value.  Each object must have a unique 
rdf:ID.  The objects in a relation may either be 
accessed directly via the rdf:ID or indirectly via 
an iterator for the surrounding relation. 
 All relations have a value which is a List 
(i.e. all relation values are associative, 
“flattened” unions (i.e. appends) of values).  
There are various subclasses of relation values 
defined as follows: 



Functional Single-valued (cardinalty=1) 
Set  No repetitions;  idempotent: (x&x=x) 
SortedSet(attrs) x.attrs<y.attrs � before(x,y) 
UndirectedGraph symmetric: (reln(x,y)�reln(y,x)) 
ReducedGraph  transitive:  

(reln(x,y)&reln(y,z)�reln(x,z) 
DAG  transitive, antisymmetric:  

reln(x,y)�~reln(y,x) 
Tree  functional(inv_reln);  

e.g. “partOf” relation 
ReachableSet reln(x,y) & relnClosure(y,z) �    

relnClosure(x,z) 
reln(x,y)�relnClosure(x,y) 

Leaves  relnClosure(x,y) & ~( ∃ z) reln(y,z) �  
leaves(x.y) 

 
 A class algebra instance document 
consists of nested tags, alternating between class 
names (capitalized, as in Java), and relation 
names (starting with a lower-case letter, as for 
Java attributes or collection names).  All tags act 
as constructors, constructing either a new object 
or new partOf 1-m relationship edges.   

Every object has an “absolute” name 
which starts at a given name space prefix and 
lists all dotted partOf relations, with non-
functional relations followed by a square-
bracketed rdf:ID label or subscript.  The 
subscript depends on the physical order of the 
list of parts.  For instance, the name 
“hasObjects[Tom].friends[Jim].child[2].haircolo
r” refers to the hair color of one particular 
person, the second child of Tom’s friend Jim.   

The “short” name of an object is simply 
of the form “prefix:@ClassName[rdfIDValue]”, 
where ClassName must be a subclass of the 
declared range of the relation in which it occurs.  
“@ClassName” is actually shorthand notation 
for “hasClassDefns[ClassName].extent”, the 
extent (i.e. list of instances) of the class 
definition.   

Both absolute and short names of objects 
are meaningful to both people and computers, 
and any class algebra object on the network has 
a unique absolute or short name after the prefix 
is expanded into a URL.  The name space 
associated with the prefix actually may contain 
many URL’s for SQL databases, XML files, or 
Java serialized files, but only one of these 

URL’s is the writable URL, and the others are 
read-only copies.  
 
3. OidLists 
 The relation domains and ranges are 
defined in the class algebra ontology.  However, 
relationships may relate any objects in 
subclasses of those domains and ranges, and 
these subclasses may be stored on different 
machines in different formats.  (All class 
instances are restricted to be in the same 
instance file).  The relation values are always 
oidLists, regardless of whether the relation is 
stored in class algebra XML files, serialized 
persistent Java beans, or SQL tables.  The 
oidList is a string composed of oidElements 
separated by semicolons.  Each oidElement has 
the form prefix:@Classname[rdfIDList].  As 
mentioned, the prefix is associated with a 
unique “writable” file and “readable” copies in 
SQL databases, class algebra XML files, and/or 
Java serialized bean files.   The Classname is a 
subclass of both the previous relation’s range 
class and the next relation’s domain class.  The 
rdfIDList is a list of rdf:ID values or ranges, 
where the ranges depend on the physical order 
of the objects in the XML file, SQL database, or 
Java collection.  The rdf:ID values must be 
unique within the name space of the prefix, so 
the Classname is theoretically redundant, but is 
supplied for easy translation to SQL tables, 
where each Classname is a SQL table name.  
When SQL tables are translated to class algebra, 
the primary keys are made unique by adding the 
table name, if necessary. 
 
4. Class Algebra Queries 
 Basically, class algebra queries look like 
extended OidLists.  The OidLists are extended 
with selections, within curly brackets.  These 
selections are based on Boolean combinations of 
“in” containment predicates which correspond 
to subclass containments or primitive value 
lattice or set containments.     
 Class algebra queries can also contain a 
“…” operator instead of a single dot operator.  



This indicates that the following query can be 
nested anywhere within the partOf relations of 
the current object, similar to XPath’s use of the 
// operator.  Also, a “*” can be used as a 
wildcard that can match any relation name. 
 Class algebra queries can also contain 
groupBy objects and their aggregate functions, 
cnt_, sum_, avg_, min_, max_, and std_.  The 
attribute names of a group are created by 
appending the above aggregate name onto the 
other numeric attribute names (i.e. those not 
used in the groupBy) of the original objects.  
The other non-numeric attributes and relations 
only have a corresponding cnt_attrOrRelnName 
attribute in the corresponding group.  For 
example, let the original objects are in a class 
with the following attributes: 
attr1:int attr2:float attr3:date attr4:Integer 
attr5:Url reln1:Class1 reln2:C2 
Then, the groupBy(“attr1,reln1”) query would 
produce the following attributes: 
attr1:int reln1:Class1 cnt_attr2 sum_attr2 
avg_attr2 min_attr2 max_attr2 std_attr2 
cnt_attr3 cnt_attr4 sum_attr4 avg_attr4 
min_attr4 max_attr4 std_attr4 cnt_attr5 
cnt_reln2 
 
5. Class Algebra Guarded Assignments 
 The selections in the above queries can 
be used to select which assignments are to be 
performed.  Assignments have the following 
form: 
<class algebra query>.relnOrAttrName 
<assignOp> <class algebra query> 
The assignment operators are “:=”, “+=”, “-=”, 
“@=”, “@+=”, and “@-=”. 
For example, the assignment 
     @People[Dan].friend += 
@People[George].friend{age in [21..inf]} 
will explicitly add George’s adult friends to 
Dan’s friends. 
The assignments 
      @Person{sex in [Female]}.husband @= 
this.spouse 
      @Person{sex in [Male]}.wife@= 
this.spouse 

define implicit husband and wife relations.  
When the spouse changes, the corresponding 
husband or wife also change. 
  Guarded assignments are useful for 
writing NP-complete queries, which are not 
writable as simple class algebra queries.  For 
example, a relaxation algorithm for the graph 
coloring problem could be stated as follows: 
            @Node[1].colors := @Colors[Red]; 
 @System.backtrack:= @Boolean[false]; 
 @Node.colors -=  neighbor{cnt(colors) 
in [1]}.colors; 
 @System{cnt(@Node{cnt(neighbors)>c
nt(colors)}>0)}.backtrack:= 

 @Boolean[true];   
//Backtrack if all nodes have at least as many 
colors as neighbors 
@Node.chooseOne{@System.backtrack&cnt(c
olors)=min(cnt(@Node.colors))}.colors:=  
  this.colors.chooseOne � 
@System.backtrack:= Boolean[false];  
 
6. Method calls 
 OWL and class algebra without 
assignments basically describe data structures.  
However, OWL’s n-triples can describe NP-
complete labeling problems, so some rather 
sophisticated control must be used to answer 
general OWL queries.  Class algebra moves that 
kind of control into the state-space search. 
 Traditional object-oriented method calls 
are generally of the form of state-space 
operators.  They take the input state of “this” 
and transform it into a new state.  The other 
arguments to the method call must evaluate to 
read-only constants.  That is, the method call 
with evaluated arguments can be used as the 
name of an edge in the state-space search graph.  
The search algorithm should prevent the 
addition of states that are subsumed (equal to or 
having more values than another state).  The 
state-space graph will then contain a superset of 
the states reachable by communicating agents.  
It simply assumes that any method can be called 
at any time with any arguments.  Actual 
execution of the agents will only produce a 



subset of these states, depending on the control 
structures within the agents.   
 
7. Summary and Conclusions 
 The tree structure of XML documents 
and the RDF schema definitions unnecessarily 
complicate the Semantic Web.  OWL is going in 
the right direction, defining everything in terms 
of triples, but its syntax is still awkward in 
several ways.  This paper has shown how some 
of these drawbacks of OWL can be overcome 
by class algebra XML documents.  These 
documents can also be translated to/from SQL 
databases and Java serialized Bean files.  The 
class algebra ontology takes the place of XML 
or RDF schemas by assuming that the Class 
names and relation/attribute names will become 
tag names, and that relation/attribute tags must 
strictly alternate with Class tags.  Every class 
tag must also have an rdf:ID which is unique in 
the name space.  This format is used for both the 
ontology definitions and the instance objects.   
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