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Motion Vector Refinement for
High-Performance Transcoding
Jeongnam Youn, Ming-Ting Sun,Fellow, IEEE, and Chia-Wen Lin

Abstract—In transcoding, simply reusing the motion vectors
extracted from an incoming video bit stream may not result in
the best quality. In this paper, we show that the incoming motion
vectors become nonoptimal due to the reconstruction errors. To
achieve the best video quality possible, a new motion estimation
should be performed in the transcoder. We propose a fast-search
adaptive motion vector refinement scheme that is capable of
providing video quality comparable to that can be achieved by
performing a new full-scale motion estimation but with much less
computation. We discuss the case when some incoming frames
are dropped for frame-rate conversions, and propose motion
vector composition method to compose a motion vector from the
incoming motion vectors. The composed motion vector can also
be refined using the proposed motion vector refinement scheme
to achieve better results.

I. INTRODUCTION

NETWORKED multimedia services, such as teleconfer-
encing, video on demand, and distance learning are

emerging. In these applications, it is often needed to adapt
the bitrate of the coded video bit streams to the available
bandwidth of various channels [1]–[5]. In a heterogeneous
network, the bitrate adaptation allows different end-users with
different subnetworks to have different quality of service
(QoS) based on their available network bandwidths. For some
real-time video coding applications, the adaptation of the
bitrates can be achieved through the rate-control in the video
encoder. However, for many other applications such as video
on demand, this can not be done since the video is already
compressed at a certain bitrate and stored in the server.

Dynamic bitrate adaptation with limited capability can be
achieved using the scalable coding provided in current video
coding standards [7], [8]. Scalable coding supports a variety of
scaled video qualities with different peak signal-to-noise ratios
(PSNR’s) (PSNR scalability), frame-rates (temporal scalabil-
ity), or spatial resolutions (spatial scalability). To achieve
different levels of video quality, the video source is first
encoded with a low PSNR, low frame-rate, or low spatial
resolution to form a base layer. The residual information
between the base layer and the original input is then encoded to
form one or more enhancement layers. Successful transmission
of the base layer results in a video sequence with basic quality.
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Additional transmissions of the enhancement layers enhance
the quality by adding the residual information. Scalable coding
in current video coding standards can provide only up to three
levels of video quality because of the limitation on the number
of enhancement layers. However, many applications require a
much finer scaling capability [4].

Converting a previously compressed video bit stream to a
lower bitrate through transcoding can provide finer and more
dynamic adjustments of the bitrate of the coded video bit
stream to meet various channel situations [9]–[15]. One of the
simplest architectures for transcoding is open-loop transcoding
in which the incoming bitrate is downscaled by modifying the
discrete cosine transform (DCT) coefficients. For example, the
DCT coefficients can be truncated, requantized, or partially
discarded in the optimal sense [9], [15] to achieve the de-
sirable lower bitrate. In the open-loop transcoding, because
the transcoding is carried out in the coded domain where
complete decoding and reencoding are not required, it is
possible to construct a simple and fast transcoder. However,
open-loop transcoding can produce “drift” degradations due
to the mismatched reconstructed pictures in the front-encoder
and the end-decoder, which often results in unacceptable video
quality.

Drift-free transcoding is possible by the direct cascade
of a decoder and an encoder as shown in Fig. 1. Although
this transcoder has higher complexity than the open-loop
transcoder, some information extracted from the incoming
video bit stream after the decoding can be used to significantly
reduce the complexity of the encoder. Thus, the complexity
may not be as bad as it appears.

In this paper, we consider the cascaded architecture as our
framework for high-performance transcoding. The cascaded
transcoder is very flexible and easily extendible to various
types of transcoding, such as temporal or spatial resolution
conversions. We will investigate techniques which can reduce
the complexity while maintaining the same level of video
quality.

In transcoding, motion estimation is usually not performed
in the transcoder because of its computational complexity.
Instead, motion vectors extracted from the incoming bit stream
are reused. However, this simple motion-vector reuse scheme
may introduce considerable quality degradation in many appli-
cations [16], [17]. Although an optimized motion vector can be
obtained by a full-scale motion estimation, this is not desirable
because of its high computational complexity.

In this paper, we propose a new motion vector refinement
scheme for a transcoder for the H.263 [23] encoded bit
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Fig. 1. Transcoding by the cascade of a decoder and an encoder.

streams. We show that the incoming motion vectors become
nonoptimal due to the quantization errors. To achieve the
best quality possible, new motion estimation should be per-
formed in the transcoder. We propose a fast-search adaptive
motion vector refinement scheme that is capable of providing
video quality comparable to that which can be achieved by
performing a new full-scale motion estimation but requires
considerably less computation when compared to full-scale
motion estimation. We discuss the case when some incoming
frames are dropped for frame-rate conversions and propose a
motion vector composition method to compose a motion vector
from the incoming motion vectors. The composed motion
vector can also be refined using the proposed motion vector
refinement scheme to achieve better results. The organization
of this paper is as follows. In Section II, the motion estimation
in transcoding and the effect of quantization errors on the
motion vectors are discussed. In Section III, we introduce the
motion vector refinement scheme. Motion vector refinement in
the frame-rate conversion is presented in Section IV. An adap-
tive motion-vector refinement scheme based on the analysis in
Section II is proposed in Section V. A fast search algorithm
for the motion vector refinement is discussed in Section VI.
Complete simulation results are presented in Section VII.
Finally, a conclusion is provided in Section VIII.

II. M OTION ESTIMATION IN TRANSCODING

Current video compression techniques exploit mainly two
types of redundancies in the uncompressed video signal to
achieve the desired compression gain [18]. First, preserving
only significant DCT coefficients can considerably eliminate
the spatial redundancy between pixels within a single frame
because of the energy compaction property of the DCT. Fur-
thermore, the motion-compensated predictive coding scheme
is used to remove the temporal redundancy between frames.
In other words, a motion-compensated block in the previous
reconstructed reference frame is subtracted from the current
macroblock. The residual signal is encoded using DCT to
further remove the spatial redundancy.

To find the motion vector for a macroblock in the current
frame, a best matching macroblock is searched within a
predefined search window in the previous reconstructed
reference frame as shown in Fig. 2. The motion vector is
defined as the displacement of the best matching block from
the position of current macroblock.

The motion estimation is performed on the luminance
macroblocks and is usually based on the sum of absolute
differences (SAD) of the respective pixels. A block with the
minimal SAD is considered the best matching block. To obtain

Fig. 2. Motion estimation.

the motion vector for the current macroblock:

SAD (1)

SAD

(2)

where and are the horizontal and vertical components of
the displacement of a matching block, and
represent a pixel in the current frame and in the previous
reconstructed reference frame, respectively. The superscript
“ ” and “ ” denotes the “current” and “previous” frame,
respectively, and the subscript “” is used to indicate the
“front-encoder” as shown in Fig. 3. In later sections, the
subscript “ ” will be used to denote the “second-encoder” in
the transcoder.

Fig. 3 details the structure of the cascaded transcoder. The
motion estimation block is omitted for simplicity. Since the
output bitrate is lower than the input bitrate, the quantization
step size in Q2 in the transcoder is usually much coarser than
the quantizer step size in Q1 in the front encoder.

In the transcoder, an optimized motion vector for the
outgoing bit stream can be obtained by applying the motion
estimation such that

SAD (3)

SAD

(4)

From Fig. 3, since the reconstructed picture in the front-
encoder is the same as the current input frame to the second-
encoder, , and . Thus,
from (4)

SAD

(5)
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Fig. 3. Structure of a cascaded transcoder.

where and
.

In (5), is the term used to
compute the SAD in the front-encoder in (2) to give the in-
coming motion vector. represents the reconstruction
error of the current frame in the front-encoder due to the
quantization Q1, while represents the reconstruction
error of the previous frame in the second-encoder due to
the quantization Q2. From (5), when the effect of the term

is negligible, performing a
new motion estimation will give the same motion vector
as the incoming motion vector (i.e., the incoming motion
vector is optimal). However, since in general there is no
guarantee that the effect is negligible all the time, there are
nonzero probabilities that the quantization errors may cause
the incoming motion vector to be nonoptimal [i.e., we can
find a better motion vector which minimizes (4)].

III. M OTION VECTOR REFINEMENT (MVR)

Although the optimized motion vector can be obtained by a
new motion estimation, it is not desirable because of its high
computational complexity. The reuse of the incoming motion
vectors has been widely accepted because it was generally
thought to be almost as good as performing a new full-
scale motion estimation and was assumed in many transcoder
architectures [10]–[12]. However, as discussed in the previous
section, simply reusing the incoming motion vectors is not
optimal. Our simulation results (which will be presented in the
later sections) show that its performance may be considerably
worse than that can be achieved with a new motion estimation.

In the analysis in the previous section, we showed that
the differential reconstruction error causes incoming motion
vectors to deviate from optimal values. In most macroblocks
the deviation is within a small range and the position of the
optimal motion vector will be near that of the incoming motion
vector. Therefore, the optimal motion vector can be easily
obtained by refining the incoming motion vector within a small
range as opposed to applying a full-scale motion estimation
[16], [17].

For the refinement of incoming motion vectors, we define
a base motion vector ( ) as the motion vector obtained
from the incoming bit stream. A delta motion vector ( )

Fig. 4. Performance of motion vector refinement (“Carphone” of QCIF
format, 300 frames). Incoming bit stream at 128 Kb/s was transcoded to 32
Kb/s with 30 frames/s. The search range for full-scale motion estimation is
�15 pixels, and the search range for motion vector refinement is�2 pixels
throughout the paper.

can be estimated within a new search window, around the
point indicated by the base motion vector:

SAD (6)

SAD

(7)

The new search window can be set much smaller than the
full-scale window (e.g., a search range of2 pixels instead
of 15 pixels or larger) and still produce almost the same
video quality as the full-scale motion estimation.

Fig. 4 shows the performance of motion vector refinement.
The quality degradation introduced by reusing incoming mo-
tion vectors is about 0.45 dB on average compared with the
application of a new full-scale full-search motion estimation.
However, the refinement of the incoming motion vectors using
a small search window (e.g., search range of2 pixels)
increases the performance close to that of the full-scale full-
search motion estimation. Detailed simulation environment
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(a)

(b)

Fig. 5. Backward motion vector interpolation. (a) Tracking macroblocks in
backward order and (b) incoming motion vectors.

and coding parameters used in the simulations are described
in Section VII.

IV. M OTION VECTOR REFINEMENT

IN FRAME-RATE CONVERSION

To transport video over low bandwidth channels, such as
the public switched telephone network (PSTN) or wireless
network, a high transcoding ratio is required. However, the
high transcoding ratio may result in unacceptable picture
quality when the video is transcoded with the full frame-rate
or full spatial resolution. For example, in a wireless network,
which normally has less than 20 Kb/s bandwidth, the quality
degradation due to the low bitrate is significant at 25 or 30
frames/s). Frame-rate reduction is often used as an efficient
scheme to allocate more bits to the remaining frames, so
that acceptable quality for each frame can be maintained. In
addition, the frame-rate conversion is also needed when an
end-system supports only a lower frame-rate. In this section,
we discuss motion vector refinement for transcoding involving
the frame-rate conversion.

A. Base Motion Vector Composition

When some incoming frames are dropped for the frame-
rate conversion, the incoming motion vectors are not valid
because they point to the dropped frames that do not exist in
the transcoded bit stream.

In Fig. 5, a situation where one frame is dropped is illus-
trated. In the figure, we assume that MBrepresents the best
matching block to MB, and MB represents the best matching
block to MB . Since frame ( ) is dropped, for MB, we
need to find a motion vector pointing to a block in frame ( )
which matches well with MB. One possible way to generate
such a motion vector without performing motion estimation
is to use the vector sum of and . In practice,
however, since MBis not on a macroblock-boundary,

is not available from the incoming bit stream. It is possible
to use the bilinear interpolation from the motion vectors

of the four neighboring
macroblocks with MB to come up with an approximation
of [6], [17]. However, the bilinear interpolation of
motion vectors has several drawbacks for temporal transcod-
ing. First, for consecutively dropped frames, the interpolation
has to be processed in the backward order starting from the
last dropped frame to the first dropped frame. This backward
processing requires all motion vectors of the dropped frames
to be stored, which requires much extra memory. Another
drawback of the bilinear interpolation is the inaccuracy of
the resultant motion vector. In spite of the weighting of each
neighboring motion vector based on the overlapping segments,
unreliable motion vectors can be produced because the area
covered by the four macroblocks may be too divergent and
too large to be described by a single motion vector.

In this paper, we propose a forward dominant vector se-
lection (FDVS) method. The proposed method selects one
dominant motion vector from the four neighboring mac-
roblocks. A dominant motion vector is defined as the motion
vector carried by a dominant macroblock. The dominant
macroblock is a macroblock that has the largest overlapping
segment with the block pointed by the incoming motion vector.
For example, for block MB’ in Fig. 5

(8)

Our simulation results show that FDVS can achieve higher per-
formance with less computation than the bilinear interpolation.
Another advantage of FDVS over the bilinear interpolation
scheme is that when multiple frames are dropped, it can
be processed in the forward order, eliminating the multiple
memories needed to store the incoming motion vectors of all
the dropped frames. Fig. 6 shows a case when two frames
are dropped. When the frame ( ) is dropped, we store
its motion vectors in a table. The stored motion vectors
will be used to compose motion vectors at the next frame-
dropping. That is, when the frame ( ) is dropped, the FDVS
searches a dominant macroblock for each current macroblock.
For example, the first macroblock in frame ( ) becomes
the dominant macroblock of the second macroblock in frame
( ). The dominant motion vector is selected from the table
at the location of the first macroblock, and then added to the
current incoming motion vector corresponding to the current
second macroblock. Then the table is updated with the new
composed value. In Fig. 6, the resultant motion vector for the
second macroblock at frame ( ) will be .
When the frame () is processed, the composed motion
vector for the first macroblock at frame () will be set at

because the stored value in the table
for the dominant block pointed by will be the dominant
motion vector of MB. Using this scheme, only one table is
needed for all the dropped frames.

During the composition process, intracoded macroblocks
may exist in the dropped frames. Since intracoded macroblock
does not carry motion vector, we assume a zero motion vector
for this macroblock to continue the composition process. After
finishing the composition, the macroblock coding mode is
recomputed.
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Fig. 6. Forward dominant vector selection (FDVS) composition scheme.

(a)

(b)

Fig. 7. Performance comparison of the proposed FDVS and the bilinear
interpolation motion vector composition. “Foreman” was encoded at 30
frames/s using a quantization parameter of 7 over 300 frames, and then
transcoded at different frame-rates using the same quantization parameter of
7. (a) Quality comparison and (b) generated bitrate.

The performances of the bilinear interpolation method and
the proposed FDVS method are compared in Figs. 7 and 8
using a public domain software [24]. As shown in Fig. 7(a), the
proposed FDVS outperforms the bilinear interpolation method
at various outgoing frame-rates. Also, the bilinear interpolation
produces much higher bitrates than the FDVS as shown in
Fig. 7(b).

Fig. 8 and Table I show another simulation results of two
test sequences, “foreman” and “carphone.” The performance of
the proposed FDVS method is about 1.7 dB (foreman) and 0.8

(a)

(b)

Fig. 8. Performance comparison of motion vector composition methods
(constant bitrate). Incoming bit streams at 128 Kb/s with 30 frames/s (300
frames) were transcoded to 50 Kb/s with 10 frames/s (100 frames). (a)
Foreman sequence and (b) carphone sequence.

dB (carphone) better than the bilinear interpolation. It should
be noted that a composed motion vector might not be optimal
because each dominant motion vector is an approximated
value. Furthermore, the composed motion vector may have
degraded performance due to the effect of reconstruction errors
when a coarser quantization step size is applied during the
transcoding. Therefore, the composed motion vector also needs
to be refined to improve the performance.

B. Motion Vector Refinement for the Composed Motion Vector

If the frames from to are dropped during
transcoding, the base motion vector can be composed by
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TABLE I
PERFORMANCE OBTAINED USING DIFFERENT MOTION VECTOR

COMPOSITION METHODS. INCOMING BIT-STREAM OF 128 Kb/sAND 30
frames/s WAS TRANSCODED INTO 50 Kb/s AND 10 frames/s

applying the FDVS. The resultant base motion vector will be

(9)

where is the dominant motion vector at the
frame ( ), and is the incoming motion vector
of the frame ( ).

The delta motion vector is estimated within a new search
area around the base motion vector as in the case of nonframe-
dropping:

SAD (10)

SAD

(11)

where the previously reconstructed reference frame for
( ) is set to the frame ( ), the frame before the
first dropped frame. Our simulation results show that the new
search area can be as small as , the small search area
used in motion vector refinement without frame-dropping.
Note that the macroblock coding mode is recomputed based
on the refined motion vector, not the composed motion vector.

Figs. 9 and 10 shows the performance of motion vector
refinement in frame-rate conversion. In the simulation,
pixels were used for . As shown in Fig. 9, the quality
degradation introduced by using only the base motion vectors
was significant, about 0.7 dB on average, when compared with
the application of full-scale motion estimation. However, the
refinement of the base motion vectors increases the perfor-
mance almost to the level of the full-scale full-search motion
estimation.

V. ADAPTIVE MOTION VECTOR REFINEMENT

In the motion vector refinement discussed in the previous
section, all incoming motion vectors are refined. However,
there are cases where incoming motion vectors can produce
near optimal results. Fig. 11 shows a performance comparison
for the two schemes: one reusing incoming motion vectors
and the other applying full-scale motion estimation. The
quality obtained by reusing the incoming motion vectors is
indicated by the average PSNR degradations compared to that
obtained by the full-scale full-search motion estimation. The
quality degradation becomes significant when the outgoing

Fig. 9. Performance of motion vector refinement with frame-rate conversion
(“Foreman”). Incoming bit stream at 128 Kb/s with 30 Kb/s (300 frames) was
transcoded to 32 Kb/s with 10 frames/s (search range of�2 pixels applied).

(a)

(b)

Fig. 10. Subjective quality of the picture with the worst PSNR drop (frame
number 34). Same coding parameters as in Fig. 9 were used). (a) Full-scale
ME (29.29 dB) and (b) FDVS with MVR (28.90 dB).

quantization step size (2 quantization parameter) is much
coarser than the incoming quantization step size. However,
when the outgoing quantization step size is very close to the
incoming quantization step size, the new full-scale full-search
motion estimation does not produce significantly better quality.
In the figure, at 30 frames/s and when the same quantization
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Fig. 11. Quality degradation when base motion vectors are used. “Foreman”
of 300 frames was encoded using the quantization parameter of 5, and
then transcoded to lower bitrate using coarser quantization parameters. The
PSNR degradation means the difference PSNR between the full-scale motion
estimation and the use of the base motion vectors.

step size is applied, the performance obtained by using new
motion vectors is actually slightly worse than that obtained
by using the incoming motion vectors. This is because when
the quantization levels are similar, redoing motion estimation
although sometimes can result in different motion vectors
which produce slightly better SAD, those motion vectors
may not optimize the PSNR. Using the incoming motion
vectors results in the same reference block as that used in
the front encoder. The residual prediction errors tend to be
more correlated with the residual errors in the first stage
encoder, which results in smaller quantization errors when
the quantization levels are similar. Fig. 11 implies that when
the quantization step size difference is small, the distortion
caused by the reuse of incoming motion vector is small. Thus
it appears that we can skip the motion vector refinement when
the quantization step size difference is small. However, the
skipping of the motion vector refinement based solely on the
quantization step size difference is not sufficient. In general,
the need for motion vector refinement depends on the effect of
the reconstruction errors relative to the strength of the motion-
compensated prediction residual signal as shown previously in
(5), and thus is signal dependent. For example, if a macroblock
is quantized to zero in the front encoder, it will also be
transcoded to zero when a much coarser quantization step size
is used in the transcoder.

Intuitively, when the difference of the quantization step sizes
is small, the effect of the term
in (5) becomes small. Furthermore, when the quantization step
size of the second encoder is much larger than that of the front-
encoder, the effect of the last two terms in (5) can be roughly
approximated to from the
observation that the reconstruction error in the second encoder

will dominate the first reconstruction error
. Note that can be calculated in

the transcoder.
Based on these observations and simulations, we propose

a criteria function sum of differential reconstruction error

(SDRE) for the adaptive scheme:

SDRE

(12)

where and are the quantization step sizes used in the
current frame of the front-encoder and the previous frame
of the second-encoder, respectively. Whenis close to ,
SDRE will be small. When is much larger than , SDRE
will be reduced to . The square
function was determined experimentally. When some frames
are dropped as in Section IV-B, “” and “ ” can be replaced
by the frame ( ) and the frame (), respectively.
Note that the computation of (12) is as simple as checking
one search position in the motion estimation. Thus it does not
require much new computation.

When an incoming motion vector has zero value, a higher
threshold should be used to prefer the use of the zero incoming
motion vector. This is because a nonzero motion vector will
need more bits to code. The proposed adaptive algorithm is
summarized as follows:

Compose the motion vector when frames are dropped
When a base motion vector is zero

if (SDRE Threshold) apply the motion
vector refinement

otherwise, skip the motion vector refinement
Otherwise

if (SDRE Threshold) apply the motion
vector refinement

otherwise, skip the motion vector refinement.

The simulation results which will be presented in Section VII
show that the adaptive motion vector refinement can reduce
the computational complexity significantly while achieving
nearly the same quality achieved by applying the motion vector
refinement at all times.

VI. FAST SEARCH ALGORITHM

For the motion vector refinement scheme discussed in
previous sections, the SAD’s of all checking points in the new
small search window are exhaustively computed to obtain the
optimal delta motion vectors. The computational complexity
required by the exhaustive search can be further reduced. In
this section, we propose a fast search algorithm to further
reduce computational complexity by minimizing the number
of required checking points.

Fast search algorithms were extensively studied for the
stand-alone encoder. Most existing algorithms assume that the
SAD’s decrease monotonically as the checking points move
close to the global minimum point. Under this unimodal error
surface assumption, several fast search algorithms to reduce
the total number of checking points are possible [19]–[22].
However, the unimodal error surface assumption does not
hold in most real-world video sequences with a large search
window. Since many local minimum points may exist within
the large search window, most proposed fast algorithms are
likely to be trapped in a local minimum. Whether it will be
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(a)

(b)

Fig. 12. Proposed HAVS method. (a) Best case: five points are checked and
(b) worst case: seven points are checked.

trapped in a local minimum or not depends on where we place
the starting checking point. That is, if the checking points
are closed to the global minimum, then the chance of hitting
the optimal motion vector without being trapped in a local
minimum will be higher [19], [20].

In previous sections, we discussed the perturbation due to
the reconstruction errors. Since the perturbation is usually
small, the base motion vector will be located near the globally
optimal position. Furthermore, the unimodal error surface can
be reasonably held around the point indicated by the base
motion vector, especially in a small search window. Therefore,
fast search algorithms are suitable for the motion vector
refinement.

In this section, we propose a horizontal and vertical search
(HAVS) scheme. Instead of searching all checking points
within the search window, the HAVS searches first for a
minimum point over the horizontal line and then over the
vertical line. At the starting position in the horizontal search,
only when the computed SAD on the left side is larger than that
of the staring point, the points on the right side are searched.
The vertical search is performed in a similar way. Fig. 12(a)

(a)

(b)

Fig. 13. Performance of the proposed fast-search, adaptive motion vector
refinement when the frame-rate was changed: (a) to 30 frames/s and (b) to
10 frames/s. “Carphone” of 300 frames was encoded at 128 Kb/s with 30
frames/s, and then transcoded to 32 Kb/s. (Threshold1 = 300, Threshold2 =
500.) (a) Outgoing frame-rate: 30 frames/s and (b) outgoing frame-rate: 10
frames/s.

shows the best case for a search range of2 pixels. The
HAVS compares the SAD’s of the starting point at position
1 and the adjacent left point at position 2 to determine the
direction for the next search. If the computed SAD at position
2 is smaller, then the point located on the left side at position
3 is checked. If the SAD at the position 2 is still smaller, a
minimum point in the horizontal direction has been found.
Next, we go up in the vertical direction. We compare the
SAD’s of position 4 and position 2. If the SAD of position
4 is smaller, we continue to go up and compare the SAD’s
of position 4 and position 5. If the SAD of position 4 is still
smaller, we have found a minimum in both the horizontal
and vertical dimensions. In this best case, only five checking
points are required. Fig. 12(b) shows the worst case situation.
The order of the search positions is also shown in the figure.
It requires seven checking points. On average, six points are
checked when a macroblock needs to perform the motion
vector refinement. This number of checking points is smaller
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TABLE II
PERFORMANCE OFPROPOSEDFAST-SEARCH, ADAPTIVE MOTION VECTOR REFINEMENT. A TEST SEQUENCE “CARPHONE” WAS ENCODED AT 128 Kb/s

WITH 30 frames/s,AND TRANSCODED INTO 32 Kb/s WITH DIFFERENT FRAME RATES. [“M EAN %MB” I NDICATES AVERAGE NUMBER OF

MACROBLOCKS TO WHICH THE MOTION VECTOR REFINEMENTS WERE APPLIED PER FRAME. “M EAN #CP” INDICATES AVERAGE NUMBER OF

CHECKING POINTS PER MACROBLOCK NEEDED TO FIND THE MOTION VECTOR. [“SPEED-UP RATIO” = (MEAN #CP� MEAN %MB)/(100�
961)] (a) OUTGOING FRAME-RATE: 30 frames/s, (b) OUTGOING FRAME-RATE: 15 frames/s,AND (c) OUTGOING FRAME-RATE: 10 frames/s

(a)

(b)

(c)

TABLE III
PERFORMANCE OF THEPROPOSEDSCHEMES. THE BIT-RATE AND FRAME-RATE OF INCOMING

BIT-STREAM IS 128 Kb/s AND 30 frames/s. (THRESHOLD1 = 300, THRESHOLD2 = 500)
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than that of the popular block-based gradient descent search
(BBGDS) [20] which may require on average of about 13
checking points.

VII. SIMULATION RESULTS

In all the simulations presented in this paper, test sequences
of QCIF (176 144) were encoded at high bitrate using a fixed
quantization parameter, or using the rate-control implemented
in [24]. At the front-encoder, the first frame was encoded as an
intraframe ( -frame), and the remaining frames were encoded
as interframes (-frames). These picture-coding modes were
preserved during the transcoding. In our simulations, bidi-
rectional predicted frames (-frames) were not considered.
However, the idea of the proposed scheme can also be applied
to -frames. When no frame was dropped, the macroblock
coding-modes were reused. In the frame-rate conversion, the
macroblock coding-modes were recomputed. A fixed search-
window size of 2 pixels for the motion vector refinement
and fixed-threshold values (Threshold 300, Threshold
500) for the adaptive scheme were used for all the simulations.

Fig. 13 shows the simulation results of different motion
vector refinement schemes at different frame-rates. The per-
formances of the FULL-MVR (nonadaptive motion vector
refinement), BBGDS ADAP MVR (adaptive motion
vector refinement with BBGDS), and HAVS ADAP
MVR (adaptive motion vector refinement with HAVS) were
compared.

Based on our simulations, HAVS ADAP MVR has
about the same performance as BBGDSADAP MVR,
but requires less computation. Furthermore, its performance
is similar to FULL-MVR, which refines all incoming motion
vectors. In the case of the adaptive refinement scheme, more
than 30% of the incoming motion vectors were reused. These
computational savings are significant and demonstrate the
effectiveness of the proposed adaptive refinement scheme. The
performances in terms of quality and speed are summarized in
Table II where FULL-ME represents the full-scale full-search
motion estimation. The speed-up ratio represents the ratio of
the required number of checking points for the motion vector
refinement compared to that of full-scale full-search motion
estimation. Simulation results on different test sequences are
summarized in Table III.

VIII. C ONCLUSION

In this paper, we have discussed motion vector refinement
for high performance transcoding. We have shown that in
many transcoding applications, reusing the incoming motion
vectors may introduce considerable quality degradation. We
have presented a mathematical analysis to show that the
degradation is due to the reconstruction errors. Quality can be
significantly improved by refining the incoming motion vectors
as opposed to applying a new full-scale motion estimation to
find the optimal motion vectors. Starting with the base motion
vector, the motion vector refinement scheme searches for a
delta motion vector within a search area much smaller than that
of the full-scale motion estimation. This small search window
is computationally much less complex.

In addition, we have proposed an adaptive motion vector
refinement scheme. This scheme significantly reduces the num-
ber of incoming motion vectors needing refinement. To further
reduce the computational complexity, we have proposed a fast-
search algorithm which requires less checking points compared
to other fast-search algorithms. We have showed through
simulations that combining the motion vector refinement with
the adaptive and the fast-search scheme produces almost the
same performance as the full-scale motion vector refinement.
We have extended the motion vector refinement scheme to
the case when the frame-rate conversion is needed. We have
proposed a forward dominant vector selection (FDVS) com-
position method to compose an outgoing motion vector from
the incoming motion vectors of the dropped frames. We have
shown that the FDVS method performs better and requires
less computation and memory than the bilinear interpolation
method. Through extensive simulations we have showed that
the proposed fast-search adaptive motion vector refinement
scheme can improve the video quality to the level achieved
by using the full-scale motion estimation, with minimal com-
putational complexity.
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