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ABSTRACT

In this paper, we propose a fast hierarchical
algorithm for disparity estimation, which is
based on the multiresolution block matching
technique with prospective disparity vectors. The
disparity vectors of each template block’s
spatially adjacent blocks are adopted as the
initial references for the template block to speed
up the estimation process. The experimental
results show that the proposed hierarchical
estimation algorithm can reduce computation
cost drastically while maintaining comparable
PSNR quality. The proposed scheme also results
in smoother disparity vector field compared to
the exhaustive search scheme. A rate-distortion
optimized hierarchical disparity estimation
algorithm is also proposed to minimize the
distortion of the reconstructed image sequence
under a target bit rate constraint. The
experimental results show that its PSNR quality
is better than the full search algorithm while
taking more computing power for the
optimization process.

1. INTRODUCTION

Disparity between two images is defined as
the differences which occur between two
simultaneous images shot by a stereoscopic
vision system which may be induced by the
relative motion of the camera and the scene, by
the relative displacement of two cameras, or by
the motion of objects in the scene. Disparity
estimation may be broadly defined as the
determination of the geometric differences
between two or more simultaneous images of the
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same scene. The differences may be the result of
binocular parallax, motion parallax, object
motion, or some combination of the above. That
is, disparity provides a way of determining the
spatial relationship between points and surfaces
in a scene. The disparity vector field that is
derived during the disparity estimation process
can be used to predict one image of the
stereoscopic image pair from the other. So the
disparity vector field and the reconstruction
errors have to be transmitted to the decoder in a
stereoscopic image sequence coding system.

Disparity compensation is a powerful tool for
stereoscopic  image/video coding. Disparity
estimation is, however, a very time consuming
operation. Since most processing time of
stereoscopic image sequence coding is spent on
the disparity estimation process, it is necessary to
simplify the estimation algorithm without
seriously  affecting the quality of the
reconstructed images, such as the hierarchical
block matching (HBM) methods for both
monocular and stereoscopic image sequence
coding proposed in the literatures [1]. These
methods are seen to drastically reduce the
amount of computation needed for block
matching and the quality of the reconstructed
images is acceptable. The proposed method of
motion and disparity estimation is based on the
multiresolution block matching technique [1]
and utilizing minimum absolute difference-
(MAD ) as the matching criterion, the MAD of
two N X N blocks X and Y is defined as

MAD(X,Y):%ZZ{X(LJ)—Y(i,j)l (1

i=] j=1
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In the following, if [i, j] are the coordinates
of the upper left-hand corner of a block, the
block is referred to as block [i, j]. For expanding
multiresolution images, we utilize the Laplacian
pyramid [3] to construct the L-level hierarchical
image structure, which involves low-pass
filtering and downsampling the image with a
factor of 2 as shown in Fig. 1

block .. [i, j] = 22: i‘ wm [ nlblock [2i +m,2 j+ n)
(2)

Where wim](n] = wim]w[n], and w[0] = a, w[1]
=w[-1]=1/4, w[2] =w[-2] = 1/4 - a/2.
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Fig. 1. A 3-level pyramid image data structure

Block-wise structure is widely used for the
currently existing coding techniques and for
disparity estimation. For the block-based
techniques of disparity estimation, it is important
to choose a proper block size. Using large-size
blocks will lead to inaccurate disparity
estimation results. On the other hand, small
block size decreases the reliability of disparity
estimation. Using hierarchical block matching
(HBM) method [1] can solve this problem. There
are two ways for hierarchical block matching
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method, that is, variable block-size matching and
constant block-size matching. The realization of
the two HBM methods is as follows.

(1) Variable block-size matching : The size of

the block for matching varies with the resolution
level : atlevel Nitis by X by, ; then at level N-1
the block size becomes 2 b, x 2 b,. If vy (i,)
is the disparity vector for the block [7, /] at level
N of the pyramid, the initial estimation Vv (i,
j) of the vector for the same block at level N-1
of the pyramid is :

Vivg (7)) =2vy (i2,j2)  (3)

(ii) Constant block-size matching @ A constant
block size of b, x b, is used in all levels of the
pyramid. The difference from the variable block-
size method is that one block at level N of the
pyramid corresponds to 4 blocks at level N-1 of
the pyramid. That is,

Vi (ij) =2vy (il2,j/2) (4)

Vivg (i+bx,j) =2wy (i2,j2) (5)

Vivg (i j+by) =2vy (il2,j/2) (6)

Vivg Gi+bx,j+by) =2vy (i2,j/2) (7)

Due to the epipolar constraint, the search
range of disparity estimation in horizontal
direction is much larger than in vertical direction.
For lacking of epipolar constraint, the search
range of motion estimation in horizontal
direction is equal to vertical one. The search
range for the 2-level HBM for disparity
estimation is specified in Table.1, where the full
pixel precision is used in level 1 and the half-
pixel precision is used in level 0. Reconstruction
of the total vector field is performed by using:
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L-2
Vioal =2L—1VL—1+22PdVP (8)

P=0
where L is the total level number of the pyramid
and dvp is the difference value between the
estimated vector and the initial estimation vector.

Disparity search range
Level 0 1
X -2.5~25 -71~7
-1.5~1.5 -1~1
Y

Table.1. Disparity estimation search range
when using 2-level pyramid

2. HIRARCHICAL DISPARITY
ESTIMATION WITH PREDICTORS

In the stereoscopic image sequence coding
system, all implemented motion estimation
algorithms can be directly applied for disparity
estimation. But in the strict sense, motion is
temporal, and disparity is spatial. By considering
the extended continuity constraint of disparity,
we can use the adjacent estimated disparity
vectors as the predictors for the current disparity
vector in the disparity estimation process. This is
under the assumption of a large object with a
smooth surface shown in the stereoscopic image
pair. In the proposed method, we utilize the three
adjacent estimated vectors as the predictors to
estimate the current vector as depicted in Fig. 2.

DV2 | DV3

DV1 DV

Fig. 2. DV: Current displacement vector; DV1,
DV2, DV3: Predictors

The predictors are only utilized at the
highest level of the pyramid. The one with the
least MAD among the three predictors is taken as
the initial estimation of the current vector with a
rather small search area. For the blocks in the
edges of the image, the number of predictors
may be one or two even zero. So it iS necessary
to search in a larger area for these edge blocks to
avoid error propagation.

The main effect of predictors is
significantly reducing the computation load in
the estimation process, but degrading the quality
of the estimation in an acceptable range. In
addition, the whole displacement vector field is
becoming smoother and it brings benefits to the
segmentation process. ‘

3. DISPARITY ESTIMATION WITH
RATE-DISTORTION OPTIMIZATION

A rate-distortion framework can be used to
define a displacement (disparity or motion)
vector field estimation ( DVFE) technique for
the image sequence coding. This technique
achieves maximum reconstructed image quality
under the constraint of a target bit rate for the
coding of the displacement vector field. The
main purpose is to find a compromise between
minimizing the bit rate of the displacement
vector filed and minimizing the displaced frame
difference (DFD) between temporally or spatially
adjacent frames. The effect of rate-distortion
optimization would be more obvious when
dealing with the low bit rate image sequence
coding, since the number of bits needed for
encoding the displacement vector field is rather
small in comparison to that for encoding the
texture of the image.

In the proposed method of DVFE using
rate-distortion optimization, the rate part is
composed of two components: one is the bit rate
for transmitting the displacement vector field and
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the other is for coding the error image. On the
other hand, the distortion part is determined by
means of DFD. The target rate constrained
optimization problem is transformed into an
equivalent unconstrained problem by merging
the rate and distortion parts through the Lagrange
multiplier [11-13]. The following is the detailed
description of the proposed method.

3.1 Rate-distortion formulation for Disparity
Estimation

Let v, € V be the disparity vector
corresponding to the block i of the image, where
V is the set of all disparity vectors determined by
the hierarchical block matching algorithm
mentioned in Section 2. The purpose of the
DVFE algorithm is to minimize the distortion D
of the reconstructed image sequence, under the
constraint of the target rate Ry, for transmitting
the disparity vector field and the error image.
This corresponds to the following constrained
optimization problem:

N
min ,221 D(vi) (9)
subject to
N

Z Ri(Vi) < Rtarget (10)

i=1
where N is the total number of blocks in the
image, D(vy) is the contribution of v; to the
overall distortion, and R(v;) is the contribution of
the vector v; to the total rate.

From the methodology shown in [14], the
above problem can be transformed into an
unconstrained optimization problem by adopting
the Lagrange multiplier A . Thus the solution
(vi (1) ,i=1,.., N } of the unconstrained
minimization of the cost function C( 1):

C(A) = §N: Ci=D(A)+ AR(A)

=3 DA+ A3 RIv(A) (1)

is also a solution of (9) ift

R = Z R[vi" ()] (12)

It was shown in [11] that D( A ) and R( A ) are
monotonic functions of the Lagrange multiplier
A, with values ranging from zero (highest rate,
lowest distortion) to oo (lowest rate, highest
distortion ) . As shown in [12], the curve of
D( X)) vs. R( A) is not continuous, that is, there
exist jumps in some intervals of value (See Fig.
3.) . A value of A corresponds to a (R, D)
point. Since the relationship between D( A ) and
R( 1) is not only one-to-one, all we have to do is
to find a optimal Lagrange multiplier A~ which
makes R(1"") close to Riarger. The corresponding
solution { v (A7) ,i=1, .., N}is the
optimal displacement vector field under the
target rate constraint.

D(1)

\
o
ol

A =0

- Rﬁrgel R( R)

Fig. 3. Curve of D( 1) versus R( 1)
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3.2 Optimization Using Convex Hull

Bisection Searching Algorithm

Each (R, D) point represents a DVFE result.
The optimal DVFE result will lie on the surface
of convex hull of all (R, D) points. Thus, the
optimal Lagrange multiplier A~ can be traced on
the surface of the convex hull for a given rate or
distortion constraint [15]. A fast method called
convex hull bisection searching algorithm has
been introduced in [12, 15]. The algorithm can
efficiently find the optimal Lagrange multiplier
%" and the optimal vector estimation result on
the surface of convex hull of all (R, D) points by
decreasing the interval of possible A
iteration framework

Firstly, we pick two value of A, Agand A
7, such that their corresponding displacement
vector fields, V" 19 and V" .;, satisfy R (V'29) >
R (V'2) and
D (V') <D (V'4;) . The next value of A
that we want to test by iteration is:

D= D(Vim)—D(V:zo) p
R(V ﬂ.o) - R(V ll)

(13)

where ¢ is a vanishingly small positive number.
Then a new search is needed and the search
interval of possible A is narrowed by replacing
Ao or Ay with A e If no new displacement
vector field exists on the surface of the convex
hull between A4 and A ;, then the displacement
vector field for A, is the optimal solution. We
can reduce the iteration times if the difference
between R (V' 4, ) and Riurger is below a
threshold.

A number of distortion measurements
have been proposed in the literatures. The

simplest and the most commonly used method is
the displaced frame difference (DFD) :

bx b
D)=y Zy: limi(m + k,n+1)—imo(m+k+vi,n+1+viy)]

k=0 1=0

(14)

in an

where im; and im, are temporal or spatial
adjacent images, (m, n) is the upper left-hand
corner coordinate of block 7, (i, v;,) is the
motion or disparity vector of block i, and bx, by
are the dimensions of the block.

4. EXPERIMENTAL RESULTS AND
CONCLUSIONS

In the following experiments, we take L = 2
and the block size is 8x8. Four methods are
compared in the experiments: exhaustive search,
hierarchical block matching without predictors
(HBM), hierarchical block matching with
predictors (HBMWP), and HBM with rate-
distortion optimization (RDO). The test
sequence used is “Tunnel” as shown in Fig. 4.
Figs. 5(a)-(d) illustrate the disparity vector fields
corresponding to the four different methods. It’s
evident that the HBMWP method results in
smoother disparity vector field distribution than
the exhaustive search and the HBM method. The
rate-distortion optimized HBM (RDO) not only
smoothes the vector filed distribution but also
tends to minimize the difference of the disparity
vector of each block with its adjacent blocks to
obtain best rate-distortion trade-off. Figs. 6(a)-(d)
show the depth maps resulted from the four
methods.

Fig.4. Test Sequence: ‘Tunnel’
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Fig. 5(d). Disparity vector field using RDO for

Fig. 5(a). Disparity vector field using exhaustive
sequence “Tunnel”

search for sequence “Tunnel”

Fig. 6(a). Depth map derived from exhaustive

Fig. 5(b). Disparity vector field using HBM for
Search for sequence “Tunnel”

sequence “Tunnel”
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Fig. 5(c). Disparity vector field using HBMWP Fig. 6(b). Depth map derived f:r’om HBM for
for sequence “Tunnel” sequence “Tunnel
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Fig. 6(¢c). Depth map derived from HBMWP for

sequence “Tunnel”

Fig. 6(d). Depth map derived from RDO for
sequence “Tunnel”

DE/DC with Residual (Tunnel)

PSNR

3.6

315

Fig. 7. PSNR comparison of the four different
disparity estimation methods

The PSNR comparison result of the four
disparity estimation methods is shown in Fig. 7.
Table 2 shows the comparison results for
average PSNR, bits/pixel, and computation time
required. The number bracketed specifies the
average bits required to transmit the disparity
vector and error image (where M stands for
disparity vector, and E for error image). The
RDO method, though using the hierarchical
search algorithm, outperforms all other three
schemes in PSNR performance due to its
optimization property. The RDO scheme,
however, is the most computation intensive
algorithm since it needs iterative optimization
computation process.

The HPMWP scheme takes minimum
computing power while maintaining comparable
PSNR performance, thus well suited to the
applications with real-time requirement. The
rate-distortion optimized hierarchical estimation
schemes has high potential in very low bit rate
visual communication applications, since it can
keep the disparity information as minimum as
possible while keeping good video quality. But it
needs further investigations to reduce the huge
computational complexity required.

Tunnel
PSNR Bit/Pixel Time
Exhaust | 31.94 | 0.5387 (M:0.0878, 100%
E:0.4509)
HBM 31.89 0.54 (M:0.0666, 17.69%
E:0.4734)
HBMWP | 31.84 | 0.5574 (M.:0.0637, 6.98%
E:0.4937)
RDO 31.99 | 0.5417 (M:0.0616, 424.56%
E:0.4801)

Table.2 Performance comparison of various estimation schemes
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