MINIMUM COST IMPLEMENTATION OF FULL VCR
FUNCTIONALITY IN MPEG VIDEO STREAMING

Chia-Wen Lin’, Jian Zhou"", Ming-Ting Sun"", and Hung Hseng Hsu"
"Dept. Computer Science & Information Engineering
National Chung Cheng University, Taiwan, R.O.C.

“Dept. Electrical Engineering
University of Washington, Washington, U.S.A.
*Computer & Communications Research Labs
Industrial Technology Research Institute, Taiwan, R.O.C.

ABSTRACT

With the proliferation of online multimedia content, the
popularity of multimedia streaming technology, and the
establishment of MPEG video coding standards, it is important
to investigate how to efficiently implement an MPEG video
streaming system. Digital video cassette recording (VCR)
functionality enables quick and user friendly browsing of
multimedia content, thus is highly desirable in streaming video
applications. The implementation of full VCR functionality,
however, presents several technical challenges which have not
yet been well resolved. In this paper, we investigate the impacts
of the VCR functionality on the video decoder complexity and
the network traffic. We also propose a minimum-cost scheme for
the efficient implementation of MPEG streaming video system
to provide full VCR functionality over a network with minimum
requirements on the network bandwidth and the decoder
complexity.

1. INTRODUCTION

With the proliferation of online multimedia content, it is highly
desirable that multimedia streaming systems support effective
and quick browsing. A key technique that enables quick and user
friendly browsing of multimedia content is to provide full VCR
functionality [1-3]. The set of effective VCR functionality
includes forward, backward, step-forward, step-backward, fast-
forward, fast-backward, random access, pause, and stop (and
return to the beginning). This set of VCR functionality allows
the users to have complete controls over the session presentation
and is also useful for other applications such as video editing.

However, the implementation of the full VCR functionality with
the MPEG [4-6] coded video is not a trivial task. MPEG video
compression is based on motion compensated predictive coding
with an I-B-P-frame structure. The I-B-P-frame structure allows
a straightforward realization of the forward-play, but it imposes
several constraints on other trick modes such as random access,
backward play, fast-forward play, and fast-backward play.
Straightforward implementation of these trick modes requires
much higher network bandwidth and decoder complexity
compared to those required for the regular forward-play function.
With the I-B-P-frame structure, to decode a P-frame, the
previously encoded I/P-frames need to be decoded first. To
decode a B-frame, both the I/P-frames before and after this B-
frame need to be first decoded. To implement a backward-play
function, a straightforward implementation at the decoder is to
decode the whole group of picture (GOP), store all the decoded

0-7803-6685-9/01/$10.0002001 IEEE

frames in a large buffer and play the decoded frames backward.
However this will require a huge buffer in the decoder to store
the decoded frames. Another possibility is to decode the GOP up
to the current frame to be displayed, and then go back to decode
the GOP again up to the next frame to be displayed. This does
not require the huge buffer but will require the client machine to
operate in an extremely high speed which is also not desirable.
The extra memory and computational costs soon become
unaffordable when the GOP size is large. Besides the problem
with backward-play, fast-forward/backward and random-access
also present difficulties. When a P/B-frame is requested, all the
related previous P/I-frames need to be sent over the network and
decoded by the decoder. This requires the network to send all the
related frames besides the requested frame at a much higher rate.
When many clients request the trick-modes, it may result in much
higher network traffics compared to the normal forward-play
situation. It also requires high computational complexity in the
client decoder to decode all these extra frames.

Some recent works have addressed the implementation of VCR
functions for MPEG compressed video in streaming video
applications [1,7-9]. Chen et al. [1] described a method of
transforming an MPEG I-P-B compressed bit-stream into a local
I-B form by performing a P-to-I frame conversion to convert all
the retrieved P-frames into I-frames at the decoder, thereby
breaking the inter-frame dependencies between the P-frames and
the I-frames. After the frame syntax conversion and frame
reordering, the motion vector swapping approach developed in [7]
can be used for backward-play of the new I-B bit-stream.
Although this approach does not require the frame memories to
store all the decoded frames for the backward-play, it increases
the computational complexity and still requires significant
storage to store the converted I-frames at the decoder. It also
causes drift in the B-pictures since the converted I-pictures are
not exactly the same as the original P-pictures. Wee et al. [8]
presented a method which divides the incoming I-P-B bit-stream
into two parts: I-P frames and B-frames. A transcoder is then
used to convert the I-P frames into another I-P bit-stream with a
reversed frame order. A method of estimating the reverse motion
vectors for the new I-P bit-stream based on the forward motion
vectors of the original I-P bit-stream as described in [9] is used to
reduce the computational complexity of this transcoding process.
For B-frames, the motion vector swapping scheme proposed in [7]
is used for reverse-play. The transcoding process, however, still
requires much computation and will cause drift due to the motion
vector approximation [9]. None of the above methods addressed
the problem of the extra network traffic and the decoding

V-33

complexity caused by some VCR functions such as fast-
forward/backward play and random-access.

Since network-bandwidth and the decoder complexity are major
concerns in most streaming video applications, in this paper, we
investigate effective techniques to implement the full VCR
functionality in an MPEG video streaming system with minimum
network bandwidth requirement and decoder complexity. We
propose to use dual bit-streams at the server to resolve the
problem of reverse-play. Based on the dual-bit-stream structure,
we propose a novel frame-selection scheme at the server to
minimize the required network bandwidth and the decoder
complexity. This scheme determines the frames to stream over
the networks by switching between the two bit-streams based on
a least-cost criterion. We also discuss a drift compensation
scheme to prevent the drift caused by the bit-stream switching.

2. SUPPORTING FULL VCR
FUNCTIONALITY WITH LEAST COST

To solve the problem in the backward-play operation, we
propose to add a reverse-encoded bit-stream in the server. To
generate the reverse-encoded bit-stream, in the encoding process,
after we finish the encoding and reach the last frame of the video
sequence, we encode the video frames in the reverse order. The
proposed dual-bit-stream structure is shown in Fig. 1, where “/™
and “R” stand for the forward and reverse encoded bit-streams
respectively. For clarity of the presentation but without loss of
generality, in this paper, we use an example in which the video is
coded in I/P-frames with a GOP size of 14 frames as shown
below. The extension of our discussion to the case with the
general [-B-P GOP structure is straightforward.

NoO I 234567 891011121314151617 18192021

decoding direction

Fi1r1ppPPPPPPPPPPPPIPZPPPPPP

decoding direction

RPPPPPPPIPPPPPPPPPPPPPI

Fig. 1. Proposed dual-bit-stream structure

As shown above, we arrange the encoding so that the I-frames in
the reverse bit-stream are interleaved between the I-frames in the
" forward bit-stream. In this way, the required number of frames
sent by the server and decoded by the decoder can be further
reduced in other trick modes as will be explained later. Two
metadata files recording the location of the frames in each
compressed bit-stream are also generated so that the server can
switch from the forward-encoded bit-stream to the reverse-
encoded bit-stream and vice versa easily. With the reverse-
encoded bit-stream, when the client requests the backward-play
mode, the server will stream the bits from the reverse-encoded
bit-stream. Using this scheme, the complexity of the client
machine and the required network bandwidth for the backward-
play mode can be minimized. The storage requirement of the
server will be about doubled. However, this is usually much
more desirable than to require a large network bandwidth and to
increase the complexity of the client machines since the network
bandwidth is more precious and there may be a large number of
client machines in the streaming video applications. Since the

encoding of the video is done off-line, the extra time needed in
producing the reverse bit-stream is not an important concern.
To reduce the decoder complexity and the network traffic in the
fast forward/backward and the random-access modes, we propose
a frame-selection scheme which minimizes a predefined ‘“‘cost”
using bit-stream switching. The cost can be the decoding effort
at the client decoder or the traffic over the networks, or a
combination of both. This is further explained as follows.
Let cg ¢ stands for the cost of decoding the next requested P-
frame from the current displayed frame, cg g for the cost of
decoding the next requested P-frame from the closest I-frame in
the forward bit-stream, and cg_g; for the cost of decoding the next
requested frame from the closest I-frame of the reverse-encoded
bit-stream. To minimize the number of frames sent to the
decoder, the costs can be the distances from the possible
reference frames to the next requested frame. To minimize the
network traffic, the costs can be the total number of bits from the
possible reference frames required for decoding the next
requested frame. It is also possible to use different weights to
combine the two costs according to the channel condition and the
client capability. Based on the current play-direction, the
requested mode, and the costs cg ¢, cg_p1, and cg gy, the reference
frame to the next requested frame with the least cost will be
chosen to initiate the decoding. This will also determine the
selection of the next bit-stream and the decoding direction. This
least-cost criterion will only be activated in the fast
forward/backward and the random access modes to avoid
frequent bit-stream switching in the normal operations.

To illustrate the scheme, we use the above example again,

assuming that the previous mode was backward-play and the

requested mode is fast-backward with a speed-up factor 6 which

needs to display a sequence of frames with frame-numbers 20, 14,

8, 2, For simplicity, in the following examples we use the

minimum decoding distance criterion (which roughly

corresponds to minimum decoder complexity) to illustrate the
selection of the next reference frame and the effectiveness of the
proposed method.

Our method will operate as follows:

1. The current position is frame 20 which was decoded using
the reverse bit-stream (R).

2. Frame 14 will be decoded from the forward bit-stream (F)
directly since it is an I-frame.

3. Frame 8 will be decoded from frame 7 of the backward bit-
stream, since the distance between frame 7 of the reverse bit-
stream (an I-frame) and the requested frame (frame 8) is less
than the distances between the requested frame and the
current decoded frame (frame 14 of the reverse bit-stream),

~and the closest I-frame of the forward bit-stream (it’s also
frame 14). Note that, in this case, we use frame 7 of the
reverse bit-stream (an I-frame) as an approximation of frame
7 of the forward bit-stream (a P-frame) to predict frame 8 of
the forward bit-stream. This will cause some drift. However,
in the fast-forward/backward modes, the drift is relatively
insensitive to human eyes due to the fast change of the
content displayed. When it resumes normal forward/reverse
play, the I-frames will terminate the drift. The drift problem
will be further investigated in the next section.

4. Frame 2 will be decoded from frames 0 and 1, using the
forward bit-stream, since the decoding effort from frame 0 of
the forward bit-stream (an I-frame) is the minimum.

V-34

The bit-stream sent from the server will have the following form:

P 1 1 P 1 P P

20 14 7 8 O 1 2 frame number

R F R F F F F selected bit-stream
In this way, we only need to send and decode 6 frames. Without
the least-cost decoding scheme, we will need to send and decode
13 frames from the reverse bit-stream.
If the minimum decoding distance criterion is used (i.e., to
minimize the number of frames sent to the decoder), the
proposed scheme will guarantee that the maximum amount of
decoding to access any frame in the sequence is less than GOP/4
frames if the I-frames in the forward and the reverse bit-streams
are interleaved. In addition, no huge temporary buffer is required
in the decoder. If the I-frames in the forward and the reverse bit-
streams are aligned, the maximum amount of decoding to access
any frame will be less then GOP/2 frames.

frame type

<

T s v
—— The proposed duai-bit-stream least-cost method
- .. Forward bit-stream only

»

@

IS

w

N
N

The average number of frames sent for decoding one frame

2 3 4 5 6 7 8 9 10 11 12
Speed-up factor
@)
22 T —r : r T
....... The proposed dual-bit-stream least-cost method
20 Forward bit-strsam only

18
0
8
K
218
b
Z
e 14
K]
312
°
2 .
£ 10
& ——
: - —_

8 o

/
sh
4
2 3 4 5 L) 7 8 9 10 11 12

Speed-up factor

(b)
Fig. 2. (a) The average number of frames; (b) the average bit-rate
to send the “Mobil and Calendar™ sequence over network using
the proposed method with respect to different speed-up factors.

Fig. 2 compares the average numbers of frames sent to the
decoder for decoding a frame and the average network traffics
with and without the proposed dual-bit-stream least-cost method
with respect to different speed-up factors in the fast-forward
operation. Two bit-streams generated by forward and reverse
encoding a 280-frame (20 GOPs in our example) “Mobile and
Calendar™ test sequence at 3 Mbps with a frame-rate of 30 fps are
used for simulation. From the above analyses, in the fast-
forward/backward and random-access operations, the sever needs

to send several extra frames to the decoder to display one frame,
thereby resulting in a heavy burden on the networks (especially
when the number of users is large) and increasing the decoder
complexity. Note that, with the proposed method, when the
speed-up factor reaches GOP/4 (e.g., 3.5 in our example), the
decoding complexity and the network traffic will not continue to
grow even when the speed-up factor gets higher. This is because,
when the speed-up factor k is larger than GOP/4, the server
always can find an I-frame in one of the two bit-streams which
has shorter distance to the next displayed frame from the current
displayed P-frame, since the distance for the nearest I-frame is
guaranteed to be less than GOP/4. In this case the number of
frames to be sent for displaying a requested frame will have a
range of [1, GOP/4+1]. If the distribution is uniform, the average
number of frames can be approximated by GOP/8+1, which is
2.75 when GOP=14, very close to the simulation result. From Fig.
2, it is obvious that the proposed method can achieve significant
performance improvement in terms of the decoder complexity
and the network traffic load. When the speed-up factor & 2
GOP/4, the proposed method guarantees a nearly constant
decoding and network traffic cost.

3. DRIFT COMPENSATION

As mentioned above, in the proposed scheme, I- or P-frames of
one bit-stream may be used to approximate P-frames of the other
bit-stream. This approximation, however, will lead to frame
mismatch and thus cause drift when the approximated frames are
used as the reference frames to predict the following P/B-frames
as illustrated in Fig. 3. In Fig. 3, the “Mobile &. Calendar”
sequence is encoded at 3 Mbps. The GOP size is 14 and the
speed-up factor is 6. When the server performs an I-to-P or a P-
to-P approximation by using the bit-stream switching, there is a
PSNR drop. The drift caused by the bit-stream switching can be
as large as 2.5 dB and will last until the next I-frame as shown.
However, the subjective degradation observed is not significant,
since the fast display speed in the fast forward/backward modes
will mask most of the spatial distortions.

Mobile & Calendar, CIF, 3Mbps. GOP=14, only | and P pictures
32 T T T T T T T

—~4— proposed
~#- revpsnr
w for psnr

forward bitstream
reverse bitstream

PSNR
@
S

proposed
method

PN

s 10 15 20 25 30 35 40
frame number

Fig. 3. PSNR comparison of the forward bit-stream, the reverse
bit-stream, and the bit-stream generated using the proposed
method.

In the random access mode, the drift will only last a few frames
within a GOP, thus will not cause serious degradation. In the fast
forward/backward mode, the drift is relatively insensitive to
human eyes due to the fast changes of the content displayed.

V-35

However, in some applications, it may still be desirable to
prevent the drift. The drift problem can be resolved by adding
two bit-streams consist of all P-frames for the drift-compensated
bit-stream switching as explained using the following example:

No 01234567 891011121314151617 18192021

decoding direction
DR PPPPPPPPPPPPPPPPPPPPPP
F TPPPPPPPPPPPPPIPPPPPPP

decoding direction

R PPPPPPPIPPPPPPPPPPPPPI
D' PPPPPPPPPPPPPPPPPPPPPEP

where D'® is a bit-stream used for switching from the I- or P-
frames of the forward bit-stream to the P-frames of the reverse
bit-stream, while D® is used for switching from the I- or P-
frames of the reverse bit-stream to the P-frames of the forward
bit-stream. The bit-stream D'} is obtained as follow.

D:::R = Pred(Et’RnAl) (l)
and
F,

DX =Pred(R,.F,.,) 2)
where Pred(4,B) represents an inter-frame prediction process that
frame B is predicted from the reference frame 4. When
performing the bit-stream switching, the correctly predicted
frame is used for switching between the forward and the reverse
bit-streams. For example, if the bit-stream is switched from F),
(an I- or P-frame) to R,., (a P-frame), then the server will send

the frames as ... F, DI*, R _, ..., instead of sending ...F,, R,.,,

R,.», With the two drift correction bit-streams, for the above
fast-backward example, the proposed method will generate a bit-
stream for the above example as follows:

P 1 I P 1 P P
20 14 7 8 0 1 2
R F R D™ F F F

ne

frame type
frame number
selected bit-stream

Since D is encoded based on the decoded frames from the
forward and the reverse bit-streams, the drift can be compensated.
If the prediction errors of the drift-compensated predictive frames
in D and D™ are losslessly encoded, there will be no drift.
Otherwise, there will be small drift. The drift will depend on the
quantization step-sizes used in the encoding. A finer quantizer
will lead to lower drift, while increasing the storage for the drift
compensation bit-streams. Since the encoding process to obtain
all the bit-streams is done off-line in streaming video
applications, the encoding complexity is not a major concern.

It should be noted that if the I-frames of the two bit-streams are
interleaved, and the speed-up factor is high enough (e.g., the
frame skipping distance =2 GOP/4), in the proposed method,
only replacing P-frames with I-frames will be sufficient because
we always can find an I-frame in one of the two bit-streams
which has shorter distance to the next requested frame than the
current decoded P-frame. In this case, we only need to store the
drift compensation frames for all the I-frames of both bit-streams.
In the fast-forward/backward operations with small speed-up
factors (e.g., 2 or 3), however, the proposed least-cost scheme
has limited gain on the decoding complexity and the network

traffics as shown in Fig. 2. Thus, a possible low-complexity
solution for the fast-forward/reverse play is:

If k< GOP/4
Use dual
switching.
else
Use bit-stream switching with I -> P drift-compensation only.

bit-streams without performing bit-stream

Using this modified scheme, only the drift-compensation frames
for the 1 -> P approximations need to be created, thus the storage
cost for the drift-compensation frames can be reduced drastically
without significant performance sacrifice in typical applications.

4. CONCLUSIONS

In this paper, we discussed issues in implementing an MPEG
video streaming system with full VCR functionality. We showed
that when the users request reverse-play, fast-forward/reverse-
play, or random access, it may result in much higher network
traffics than the normal-play mode. These trick-modes may also
require high client machine complexity. We proposed to use a
reverse-encoded bit-stream to simplify the client terminal
complexity while maintaining the low network bandwidth
requirement. We also proposed a minimum-cost frame-selection
scheme which can minimize the number of frames needed to be
sent over the network and to be decoded. We also discussed a
drift compensation scheme to prevent the drift caused by the bit-
stream switching. We showed that with our proposed scheme, an
MPEG-4 video streaming system with full VCR functionality can
be efficiently implemented to minimize the required network
bandwidth and decoder complexity.

5. REFERENCES

[17 M. S. Chen, D. D. Kandlur, "Downloading and stream
conversion: supporting interactive playout of videos in a
client station," Second Int. IEEE Conf. Multimedia
Computing and Svstems, pp. 73-80, Washington, 1995.

[2] T. D.C. Little and D. Venkatesh, "Prospects for interactive
video-on-demand," IEEE Multimedia, vol. 13, pp. 14-24,
Aug. 1994.

[3] F.C. Lieral, “Browsing digital video,”™ Technical Report:
MSR-TR-99-67, Microsoft Research, Sep. 1999,
ftp://ftp.research.microsoft.convpub/tr/tr-99-67.pdf

[4] ISO/IEC 11172, *Coding of moving pictures and associated
audio for digital storage media at up to about 1.5 Mbits/s,”

(MPEG-1), Oct. 1993.

[5] ISO/IEC 13818-2 “Generic coding of moving pictures and
associated audio”. (MPEG-2), Nov. 1993.

[6] ISO/IEC JTCI/SC29/WGI11 “Coding of moving pictures
and associated audio MPEG98/W2194.” (MPEG-4), Mar.
1998.

[7] S. Chen, “Reverse playback of MPEG video,™ U.S. Patent
5,739,862.

[8] S. J. Wee and B. Vasudev, “Compressed-domain reverse
play of MPEG video streams,” Proc. SPIE Conf. Multimedia
Svst. and Appl., pp. 237-248, Nov. 19938.

[9] S.J. Wee, “reversing motion vector fields,” Proc. [EEE Int.
Conf. Image Proc., Oct. 1998.

V-36

