MPEG Video Streaming with VCR Functionality

Chia-Wen Lin", Jeongnam Youn", Jian Zhou', Ming-Ting Sun', and Iraj Sodagaft
*Department of Computer Science and Information Engineering

National Chung Cheng University, R.O.C.
ewlin@cs.ccu.edu.tw

"Equator, US4
Jnyoun@equator.com

TDepartment of Electrical Engineering
University of Washington, USA
{zhouj, sun}@ee.washington.edu

* PacketVideo, USA
iraj@packetvideo.com

Abstract

With the proliferation of online multimedia content, the
popularity of multimedia streaming technology, and the
establishment of MPEG video coding standards, it is
important to investigate how to efficiently implement an
MPEG video streaming system. Digital video cassette
recording (VCR) functionality enables quick and user
Jriendly browsing of multimedia content, thus is highly
desirable in streaming video applications. The
implementation of full VCR functionality, however,
presents several technical challenges which have not yet
been well resolved. In this paper, we investigate the
impacts of the VCR functionality on the video decoder
complexity and the network traffic. We propose a least-
cost scheme for the efficient implementation of MPEG
streaming video system to provide full VCR functionality
over a network with minimum requirements on the network
bandwidth and the decoder complexity. We also discuss
our implementation of an IP-based MPEG-4 video
streaming platform which provides full VCR functions.

1. Introduction

Multimedia applications have entered an exciting era
that will enormously impact our daily life. Today’s
multimedia technology allows network service providers to
offer versatile services such as home shopping, games,
video surveillance, and movie on demand [1-2]. In these
applications, video streaming technology plays a critical

0-7695-0933-9/00 $10.00 © 2000 IEEE

146

role in the media delivery. Realizing that video streaming
has so many applications and so great commercial potential,
many companies, organizations, and universities are
developing new products [3-7], standards, and technologies
[8] in this area.

A video streaming system should be capable of
delivering concurrent video streams to a large number of
users. The realization of such a system presents several
challenges, such as the huge storage capacity and
throughput in the video server and the high bandwidth in
networks to deliver the video streams. With the rapid
progress in processing hardware, software, storage devices,
and communication networks, these problems are being
solved and video streaming applications are becoming
increasingly popular.

In addition to supporting a large number of users, with
the proliferation of online multimedia content, it is also
highly desirable that multimedia streaming systems support
effective and quick browsing. A key technique that enables
quick and user friendly browsing of multimedia content is
to provide full VCR functionality [9]. The set of effective
VCR functionality includes forward, backward, step-
forward, step-backward, fast-forward, fast-backward,
random access, pause, and stop (and return to the
beginning). This set of VCR functionality allows the users
to have complete controls over the session presentation and
is also useful for other applications such as video editing.

With the establishment of MPEG video coding
standards [10-12], it is expected that many video sequences
for streaming applications will be encoded in MPEG
formats. However, the implementation of the full VCR

functionality with the MPEG coded video is not a trivial
task. MPEG video compression is based on motion
compensated predictive coding with an I-B-P-frame
structure. The I-B-P-frame structure allows a
straightforward realization of the forward-play, but it
imposes several constraints on other trick modes such as
random access, backward play, fast-forward play, and fast-
backward play. Straightforward implementation of these
trick modes requires much higher network bandwidth and
decoder complexity compared to those required for the
regular forward-play function.

With the I-B-P-frame structure, to decode a P-frame, the
previously encoded I/P-frames need to be decoded first.
To decode a B-frame, both the I/P-frames before and after
this B-frame need to be first decoded. To implement a
backward-play function, a straightforward implementation
at the decoder is to decode the whole group of picture
(GOP), store all the decoded frames in a large buffer and
play the decoded frames backward. However this will
require a huge buffer in the decoder to store the decoded
frames which is not desirable. Another possibility is to
decode the GOP up to the current frame to be displayed,
and then go back to decode the GOP again up to the next
frame to be displayed. This does not require the huge
buffer but will require the client machine to operate in an
extremely high speed which is also not desirable. The extra
memory and computational costs soon become
unaffordable when the GOP size is large.

Besides the problem with backward-play, fast-
forward/backward and random-access also present
difficulties. When a P/B-frame is requested, all the related
previous P/I-frames need to be sent over the network and
decoded by the decoder. This requires the network to send
all the related frames besides the requested frame at a much
higher rate which can be many times of that required by the
normal forward-play. When many clients request the trick-
modes, it may result in much higher network traffics
compared to the normal forward-play situation. It also
requires high computational complexity in the client
decoder to decode all these extra frames.

Some recent works have addressed the implementation
of VCR functions for MPEG compressed video in
streaming video applications [1,13-15]. Chen et al. [1]
described a method of transforming an MPEG I-P-B
compressed bit-stream into a local I-B form by performing
a P-to-I frame conversion to convert all the retrieved P-
frames into I-frames at the decoder, thereby breaking the
inter-frame dependencies between the P-frames and the I-
frames. After the frame syntax conversion and frame
reordering, the motion vector swapping approach
developed in [13] can be used for backward-play of the
new I-B bit-stream. Although this approach does not
require the frame memories to store all the decoded frames
for the backward-play, it increases the computational

147

complexity and still requires significant storage to store the
converted I-frames at the decoder. It also causes drift in
the B-pictures since the converted I-pictures are not exactly
the same as the original P-pictures. Wee et al. [14]
presented a method which divides the incoming I-P-B bit-
stream into two parts: I-P frames and B-frames. A
transcoder is then used to convert the I-P frames into
another I-P bit-stream with a reversed frame order. A
method of estimating the reverse motion vectors for the
new I-P bit-stream based on the forward motion vectors of
the original I-P bit-stream as described in [15] is used to
reduce the computational complexity of this transcoding
process. For B-frames, the motion vector swapping scheme
proposed in [13] is used for reverse-play. The transcoding
process, however, still requires much computation and will
cause drift due to the motion vector approximation [14].
None of the above methods addressed the problem of the
extra network traffic and the decoding complexity caused
by some VCR functions such as fast-forward/backward
play and random-access.

Since network-bandwidth and the decoder-complexity
are major concerns in most streaming video applications, in
this paper, we investigate effective techniques to implement
the full VCR functionality in an MPEG video streaming
system with minimum network bandwidth requirement and
decoder complexity. We propose to use dual bit-streams at
the server to resolve the problem of reverse-play. Based on
the dual-bit-stream structure, we propose a novel frame-
selection scheme at the server to minimize the required
network bandwidth and the decoder complexity. This
scheme determines the frames to stream over the networks
by switching between the two bit-streams based on a least-
cost criterion. We also describe our implementation of an
MPEG-4 video streaming system supporting the full VCR
functionality.

The rest of this paper is organized as follows. In
Section 2, we discuss issues related to the MPEG video
streaming with full VCR functionality. In Section 3, we
describe our proposed scheme for supporting full VCR
functionality with least network resource and decoding
effort. Section 4 shows the performance of the proposed
method. Section 5 describes our implementation of an
MPEG-4 video streaming system with full VCR
functionality. Finally, conclusions are given in Section 6.

2. MPEG video streaming with full VCR
functionality

A block diagram of an MPEG video streaming system is
shown in Figure 1. The video streams are compressed
using MPEG video coding standards and are stored in the
server. The client can view the video while the video is
being streamed over the network. In the client machine, a

pre-load buffer is set up to smooth out the network delay
jitter. In this paper we discuss the scenario that the video is
streaming over the Internet and the full VCR functionality
needs to be supported.

There are many different schemes to encode the MPEG
video, depending on the desirable server/network/client
complexity requirements. For example, the video can be
encoded with all I-frames. This will result in the lowest
complexity client machine. However, it will require very
large server storage and network bandwidth since the I-
frames will result in high bit-rates. Since the network
bandwidth usually is the highest concern, we assume that
the video is coded with all I-B-P frames that can achieve
high compression ratios for the transport over a network
with minimum bandwidth resources.

As described in the last section, the trick-modes of the
VCR functionality requires higher network-bandwidth and
decoder-complexity. In the following, we provide some
analyses and simulation results to show how many extra
frames need to be sent through the networks and decoded at
the client decoder in average. In the analyses, we consider
two cases: (1) random access and (2) fast-forward play.
Since B-frames are not involved in decoding later frames,
for clarity but without loss of generality, we assume the bit-
stream contains I- and P-frames only. The results can be
easily extended to the [-P-B-frame structure.

2.1 Random access

In the random-access operation, the decoder requests a
frame with an arbitrary distance from the current displayed
frame. If the requested frame is an I-frame, the server side
will only need to transmit this frame, and the decoder can
decode it immediately. However, if the requested frame is
a P-frame, the server needs to transmit all the P frames
from the previous nearest I frames to this requested frame.

Suppose all the GOPs in the bit-stream have the same
length N, and frame N, is the random-access point.

le N >
I PP PPPPPPPPPUPZPI

01 N,

Then, in order to decode frame N, frames 0, 1, ...N-1
should also be sent from the server side. Assuming the
random-access points are uniformly distributed, the average
number of extra frames to send is Nya=(N-1)/2. For
example, when N=14, Ny, =6.5, meaning that an average
of 6.5 extra frames (a total of 7.5 frames) should be
transmitted over the network and decoded by the decoder
in order to decode the requested frame in the random-
access mode.

148

2.2 Fast-forward play

Suppose frame N is the starting point of the fast-forward
operation, and £ is the fast-forward speed-up factor (e.g. for
k=6, only one frame will be displayed every 6 frames).
Since the next frame to be displayed is Nj., the server may
send the frames N Nz ... Ny, So that totally £ frames
will be received by the client side to decode the frames N,
Njiz... Ny (but just displays the frame Njy).

In fact, the server may not need to send so many frames.
For example, consider the case:

9
P P P PP

14 15 16 17 18 19
1 PP P PP

where frame 9 is the current displayed frame, and frame 15
is the next frame to be displayed under the fast-forward
mode (k=6). Apparently, there is no need to send frames
10-13, since they are not needed for the decoding of frame
15. Therefore, the server can just send frames 14 and 15.
Similar to the random-access mode, the starting point of the
fast-forward mode can be any frame in a GOP. Different
starting points will lead to different numbers of frames to
be sent. We have simulated the situation of N=14, k=6. As
shown in Table 1, the average total number of frames needs
to be sent for decoding a displayed frame is about 4.76
frames.

3. Supporting full VCR functionality with
minimum network bandwidth and decoder
effort

To solve the problem in the backward-play operation,
we propose to add a reverse-encoded bit-stream in the
server. To generate the reverse-encoded bit-stream, in the
encoding process, after we finish the encoding and reach
the last frame of the video sequence, we encode the video
frames in the reverse order. The proposed dual-bit-straem
structure is shown in Figure 2, where “F” and “R” stand for
the forward and reverse encoded bit-streams respectively.
For clarity of the presentation but without loss of generality,
in this paper, we use an example in which the video is
coded in I/P-frames with a GOP size of 14 frames as shown
in Figure 2. The extension of our discussion to the case
with the general I-B-P GOP structure is straightforward.

In Figure 2, we arrange the encoding so that the I-frames
in the reverse bit-stream are interleaved between the I-
frames in the forward bit-stream. In this way, the required
number of frames sent by the server and decoded by the
decoder can be further reduced in other trick modes as will
be explained later. Alternatively, the I-frames in both
streams can be aligned to save storage since the two I-
frames in the forward and the reverse bit-streams are the
same, and only need to be stored once. Two metadata files

recording the location of the frames in each compressed
bit-stream are also generated so that the server can switch
from the forward-encoded bit-stream to the reverse-
encoded bit-stream and vice versa easily. I-frames
represent the access points to switch the streams. With the
reverse-encoded bit-stream, when the client requests the
backward-play mode, the server will stream the bits from
the reverse-encoded bit-stream. Using this scheme, the
complexity of the client machine and the required network
bandwidth for the backward-play mode can be minimized.
The storage requirement of the server will be about
doubled. However, this is usually much more desirable
than to require a large network bandwidth and to increase
the complexity of the client machines since the network
bandwidth is more precious and there may be a large
number of client machines in the streaming video
applications. Since the encoding of the video is done off-
line and can be automated, the extra time needed in
producing the reverse-encoded bit-stream is not an
important concern.

To reduce the decoder complexity and the network
traffic in the fast forward/backward and the random-access
modes, we propose a frame-selection scheme which
minimizes a predefined “cost” using bit-stream switching.
The cost can be the decoding effort at the client decoder or
the traffic over the networks, or a combination of both.
This is further explained as follows.

Let cg ¢ stands for the cost of decoding the next
requested P-frame from the current displayed frame, cg q
for the cost of decoding the next requested P-frame from
the closest I-frame in the forward bit-stream, and cg g for
the cost of decoding the next requested frame from the
closest I-frame of the reverse-encoded bit-stream. To
minimize the number of frames sent to the decoder, the
costs can be the distances from the possible reference
frames to the next requested frame. To minimize the
network traffic, the costs can be the total number of bits
from the possible reference frames required for decoding
the next requested frame. The bit-rate calculation can be
done simply by recording the number of bits used for each
encoded frame in the metadata file in the pre-encoding
process, and summing up the bit-rates of those frames to be
sent. In general, a larger number of frames to be sent
implies heavier network load. However, it also depends on
the numbers of I-, P-, and B-frames to be sent since the
numbers of bits produced by these three types of frames
vary greatly. It is also possible to use different weights to
combine the two costs according to the channel condition
and the client capability. Based on the current play-
direction, the requested mode, and the costs cg_c, cr_ri, and
cr gy, the reference frame to the next requested frame with
the least cost will be chosen to initiate the decoding. This
will also determine the selection of the next bit-stream and
the decoding direction. This least-cost criterion will only be

activated in the fast forward/backward and the random

access modes to avoid frequent bit-stream switching in the

normal forward/backward operations.

To illustrate the scheme, we use the example in Figure 2
again, assuming that the previous mode was backward-play
and the requested mode is fast-backward with a speed-up
factor 6 which needs to display a sequence of frames with
frame-numbers 20, 14, 8, 2, For simplicity, in the
following examples we use the minimum decoding distance
criterion (which roughly corresponds to minimum decoder
complexity) to illustrate the selection of the next reference
frame and the effectiveness of the proposed method.

Our method will operate as follows:

1. The current position is frame 20 which was decoded
using the reverse bit-stream (R).

2. Frame 14 will be decoded from the forward bit-stream (F)
directly since it is an I-frame.

3. Frame 8 will be decoded from frame 7 of the backward
bit-stream, since the distance between frame 7 of the
reverse bit-stream (an I-frame) and the requested frame
(frame 8) is less than the distances between the requested
frame and the current decoded frame (frame 14 of the
reverse bit-stream), and the closest I-frame of the
forward bit-stream (it’s also frame 14). Note that, in this
case, we use frame 7 of the reverse bit-stream (an I-
frame) as an approximation of frame 7 of the forward
bit-stream (a P-frame) to predict frame 8 of the forward
bit-stream. This will cause some drift. However, in the
fast-forward/backward modes, the drift is relatively
insensitive to human eyes due to the fast change of the
content displayed. When it resumes normal
forward/reverse play, the I-frames will terminate the drift.
The drift problem will be further investigated in the next
section.

4. Frame 2 will be decoded from frames 0 and 1, using the
forward bit-stream, since the decoding effort from frame
0 of the forward bit-stream (an I-frame) is the minimum.

The bit-stream sent from the server will have the following
form:

P I I P I P P . frame type
2014 7 8 0 1 2 .. frame number
R F R F F F F selected bit-stream

The frames indicated by the bold-face are those to be
displayed at the client side. In this way, we only need to
send and decode 6 frames. Without the minimum effort
decoding scheme, we will need to send and decode 13
frames from the reverse bit-stream.

In the case of random access, frame-jump will be
performed followed by normal forward-play. For example,
the client requests random access to frame 22 when the
current decoded frame is frame 3. With the proposed

method using the minimum decoding distance criterion, the
server streams the bit-stream as follows:

P.1 PP P. .. frame type
3 21 22 23 24 ... frame number
F R F F F ... selected bit-stream

In this example, we only need to send and decode 2
frames to reach frame 22. Without our proposed least-cost
scheme, it will require to send and decode 9 frames from
frame 14 (an I-frame) using the forward bit-stream. Again,
in this example, for frame 21, we use the I-frame in the
reverse bit-stream to approximate the P-frame in the
forward bit-stream. This will cause drift but the drift will
only last a few frames within the GOP (a fraction of a
second) since the video content will be refreshed by the I-
frame in the next GOP. Thus it should not be a problem.

If the minimum decoding distance criterion is used (i.e.,
to minimize the number of frames sent to the decoder), the
proposed scheme will guarantee that the maximum amount
of decoding to access any frame in the sequence is less than
GOP/4 frames if the I-frames in the forward and the reverse
bit-streams are interleaved. In addition, no huge temporary
buffer is required in the decoder. If the I-frames in the
forward and the reverse bit-streams are aligned, the
maximum amount of decoding to access any frame will be
less then GOP/2 frames.

4. Performance analysis of the proposed dual-
bit-stream least-cost method

In the following, we analyze the performance of the
proposed method using the minimum decoding distance
criterion for the random access and the fast-forward play
modes.

4.1 Random access

Using the dual-bit-stream example shown in Figure 2,
we label the frames in the GOP where the requested frame
liesas 0, 1,2, ..., N-1, frame N; is the random access point.
Ng is the position of the I-frame in the reverse bit-stream.

In this case, the frames to be transmitted for decoding
frame N; will be decided by two distance measures, one is
the distance from frame N to the nearest I frame in the
forward bit-stream, and the other distance is from N; to the
nearest I-frame in the reverse bit-stream.

Assume N [0,N-1], Ny, is in the range of [1,N-1]. For
simplicity but without loss of generality, we assume that N
is even and Mg is odd as in our previous example. We can
observe that:

¢ The minimum number of extra frames to be sent via the
network is 0 (when N=0 or N=Ngy);

150

o The maximum number of extra frames to be sent via the
network is
maxuTl N=1=Ny
2 2
e The average number of extra frames to be sent via the

network is:

+1)5

Ny =1 . Ny =1+N v
== 8 (N =) T (i—N 9 (N=i
Nm=i#+z(k;vl)+i (Nm)* %
i=0 ;,N'“” i=Npy+1 I=NH+I+N
2 2
_INZ =2NNy +N?-2
AN

By taking the derivative with respect to Ng;, we can find
that when Mg, takes the odd number closest to N/2, Ny, can
take the minimum value of

N 1 FNooga
N ={8 2N 2

N (ﬂ=even)

8 2

For example, when N=14, Nx=7, Nyans=1.72, meaning that
an average of 1.72 extra frames (i.e., 2.72 total frames)
should be transmitted to decode 1 frame in the random
access mode. Apparently, this is much better than the case
in Section 2 (7.5 total frames without our scheme).

4.2 Fast-forward play

We simulated the situation of N=14, Nx=7, k=6. Table 2
shows the simulation result. The average total number of
frames to be send before decoding a requested frame is
2.71 (compared to 4.76 without our scheme).

Figure 3 compares the average numbers of frames sent
to the decoder for decoding a frame and the average
network traffics with and without the proposed dual-bit-
stream least-cost method with respect to different speed-up
factors in the fast-forward operation. Two bit-streams
generated by forward and reverse encoding a 280-frame
(20 GOPs in our example) “Mobile and Calendar” test
sequence at 3 Mbps with a frame-rate of 30 fps were used
for simulation. From the above analyses, in the fast-
forward/backward and random-access operations, the sever
needs to send several extra frames to the decoder to display
one frame, thereby resulting in a heavy burden on the
networks (especially when the number of users is large) and
increasing the decoder complexity. Note that, with the
proposed method, when the speed-up factor reaches GOP/4
(e.g., 3.5 in our example), the decoding complexity and the
network traffic will not continue to grow even when the
speed-up factor gets higher. This is because, when the
speed-up factor £ is larger than GOP/4, the server always
can find an I-frame in one of the two bit-streams which has
shorter distance to the next displayed frame from the
current displayed P-frame, since the distance for the nearest
I-frame is guaranteed to be less than GOP/4. In this case

the number of frames to be sent for displaying a requested
frame will have range of [1, GOP/4+1]. If the distribution
is uniform, the average number of frames can be
approximated by GOP/8+1, which is 2.75 when GOP=14,
very close to the simulation result. From Figure 3, it is
obvious that the proposed method can achieve significant
performance improvement in terms of the decoder
complexity and the network traffic load. When the speed-
up factor k = GOP/4, the proposed method guarantees a
nearly constant decoding and network traffic cost.

5. Implementation of an MPEG-4 video
streaming system with full VCR functionality

We have implemented an MPEG-4 [12] video streaming
system to demonstrate the effectiveness of our scheme.
Figure 4 illustrates the overall structure of the system and
depicts its major functional blocks.

The client station is connected to the remote video
server over an IP network and requests access to a
compressed video sequence. Two logical channels are
established between the server and the client: the data
channel and the control channel. The server delivers the
requested MPEG-4 bit-stream through the data channel and
receives VCR commands through the control channel.

As shown in Figure 4, the video server consists of a
VCR Manager, a Bit-stream Manager, an MPEG-4 System
Network Server, and a Video Database. The client station
consists of an MPEG-4 Player, an MPEG-4 Object
Decoder, a Scene Composer, and an MPEG-4 System
Network Client. The client station will access the video
server and interactively retrieve a video sequence through
the Graphic User Interface of the MPEG-4 Player.

The MPEG-4 Player provides the user interface and
displays video frames sent by the server according to the
user’s requests. According to the specific VCR function
that the user selected through the user interface, the Player
generates the requested frame-number and sends it to the
MPEG-4 System Network Client. The MPEG-4 Object
Decoder receives the corresponding bit-stream from the
MPEG-4 System Network Client, performs the decoding
procedure of the received bit-stream, and transfers the
decoded frames to the MPEG-4 Player.

The MPEG-4 System Network Server manages the
network connection. The Bit-stream Manager maintains the
record of the video bit-streams, and the VCR Manager
handles the state-machine described in the previous section.

6. Conclusions

In this paper, we: discussed issues in implementing an
MPEG video streaming system with full VCR functionality.
We showed that when the users request reverse-play, fast-
forward/reverse-play, or random access, it may result in

151

much higher network traffics than the normal-play mode.
These trick-modes may also require high client machine
complexity. We proposed to use a reverse-encoded bit-
stream to simplify the client terminal complexity while
maintaining the low network bandwidth requirement. We
proposed a minimum-cost frame-selection scheme which
can minimize the number of frames needed to be sent over
the network and to be decoded. We also described our
implementation of an MPEG-4 video streaming system.
We showed that with our proposed scheme, an MPEG-4
video streaming system with full VCR functionality can be
efficiently implemented to minimize the required network
bandwidth and decoder complexity.

7. References

[11 M. S. Chen, D. D. Kandlur, "Downloading and stream
conversion: supporting interactive playout of videos in a client
station," Second Int. IEEE Conf.- Multimedia Computing and
Systems, pp. 73-80, Washington, 1995.

[2] T.D.C. Little and D. Venkatesh, "Prospects for interactive
video-on-demand," IEEE Multimedia, vol. 13, pp. 14-24, Aug.
1994.

[3] Microsoft Windows Media, Microsoft Corporation Inc.,
http://www.microsoft.com/windows/windowsmedia/

[4] Apple QuickTime Player,
http://www.apple.com/quictime/

[51 Real Networks RealPlayer, http://www.real.com/
[6] Relay Networks ReplayTV, http://www.replay.com/

Apple Corporation Inc,

[7] TiVo Inc., http://www.tivo.com/

[8] D. Wuetal., “Transporting real-time video over the Internet:
challenges and approaches,” to appear in Proc. IEEE, 2000.

[91 F.C.Lietal, “Browsing digital video,” Technical Report:
MSR-TR-99-67, Microsoft Research, Sep. 1999,
ftp://fip.research.microsoft.com/pub/tr/tr-99-67.pdf

[10] ISO/IEC 11172, “Coding of moving pictures and associated
audio for digital storage media at up to about 1.5 Mbits/s,”
(MPEG-1), Oct. 1993.

[11] ISO/EC 13818-2 “Generic coding of moving pictures and
associated audio”. (MPEG-2), Nov. 1993.

[12] ISO/IEC JTC1/SC29/WG11 “Coding of moving pictures
and associated audio MPEG98/W2194,” (MPEG-4), Mar. 1998.

[13] S. Chen, “Reverse playback of MPEG video,” U.S. Patent
5,739,862.

[14] S. J. Wee and B. Vasudev, “Compressed-domain reverse
play of MPEG video streams,” Proc. SPIE Conf. Multimedia Syst.
and Appl., pp. 237-248, Nov. 1998.

[15] S. J. Wee, “reversing motion vector fields,” Proc. IEEE Int.
Conf. Image Proc., Oct. 1998.

MPEG
Video server

client /@

client

Figure 1. MPEG video streaming.

Table 1. Average total number of frames transmitted for each displayed frame in the fast-forward mode with respect to
different starting points using the traditional method (N=14, k=6)

Start Point 0 1 2 3 4 5 6 7 8 9 110 | 11} 12| 13

Frames
Transmitted

46| 5 |46 | 5 146 | 5 |46 | 5 |44 |48 (45149146 5

Average total number of frames transmitted to display one frame: 4.76

FrameNo. 0 1 2 3 4 5 6 7 8 91011121314151617 181920212223

» decoding direction for the forward stream
F IPPPPPPPPPPPPPIPPPPPPPPP..

€ decoding direction for the reverse stream
R PPPPPPPIPPPPPPPPPPPPPIPP.
N; Nt

Figure 2. The proposed dual-bit-stream structure.

Table 2. Average total number of frames transmitted for each displayed frame in the fast-forward mode with respect to
different starting point using the proposed method (N=14, k=6)

Start Point 0 1 2 3 4 5 6 7 8 9 11011 (12713

Frames 27127126 (27127128127 (27126127127 |28127128
Transmitted

Average total number of frames transmitted to display one frame: 2.71

152

7 T T T i T Y T —r T 22 - —
—— The proposed dual-bit-stream lsast-cost msthod .- —— The p
~ - Forward bit-stream only .

— T T T
o duslbit-ot least-cost method
20} - - Forward bit-stream only

18}

16}

14

101

The average number of fames sent for decoding one fame
-~
The average bit -rate (Mbits/sec)

1 " “ " " " " s P 4 —— . L I S S

2 3 4 5 [7 8 9 10 1 12 2 3 4 5] 7 8 9 10 1 12
Speed-up factor Speed-up factor

@ ®)

Figure 3. (a) Average numbers of frames; (b) average bit-rates to send the “Mobil and Calendar” sequence over network with
respect to different speed-up factors with (the solid lines) and without (the broken lines) the proposed method.

CLIENT
o,
Object '/ Scene "‘
Decoder Compose
e, -

MPEGAY,
System

—® User Data Flow
S p—— VCR control flow

Figure 4. System architecture of the proposed MPEG-4 video streaming system.

153

