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ABSTRACT 
In this paper, we propose a hierarchical three step search  
algorithm using pyramid hierarchy. Hierarchical 
Minkowski inequality is adopted to reduce the cost of the 
sum of absolute difference (SAD) computations. A 
top-town procedure is developed to search motion vectors 
hierarchically and the search pattern used in the 
well-known Three Step Search (TSS) is adopted. We also 
propose a hybrid motion estimation scheme by combining 
the proposed Hierarchical Block Sum Pyramid Three Step 
Search (HBSPTSS)  with the famous Block-Based 
Gradient Search (BBGDS) algorithms. Experimental 
results show that, compared to other existing search 
algorithms, the proposed hybrid search algorithm can 
achieve high computation efficiency for both slow-motion 
and fast-motion video contents while maintaining 
excellent PSNR performance. It is thus suitable for wide 
application fields with real-time requirement. 

1. INTRODUCTION 

Motion estimation plays a very important role in 
motion compensated coding algorithms. It’s also the most 
time consuming operation in the codec system. The 
amount of computation required for SAD-based full search 
for motion estimation can take up to 70-80 % of the 
computing power of the whole encoding system [3]. Many 
research works on block-based motion estimation 
algorithms were conducted to reduce  the computational 
cost in three ways: 1) fast search by reduction of the 
number of candidate blocks for matching [1-2]; 2) fast 
algorithm by reduction of the computational complexity of 
the matching criteria [3-6]; 3) fast algorithm by block 
motion field subsampling. 

The sum of absolute difference (SAD) is the most 
widely used matching criteria, the SAD of two N x N  
blocks X and Y is defined as 
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The Successive Elimination Algorithm (SEA) 
proposed in [1] adopted the well-known Minkowski 
inequality concept shown below 
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to derive the following inequality: 
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Then, based on Equation (3), a fast search algorithm was 
developed in [1] which led to about three times faster than 
the Full-Search Algorithm (FSA). The Block Sum 
Pyramid Algorithm (BSPA) in [2] made extension of  
Equation (3) to a multiresolutional pyramid form. In the 
BSPA, the pyramid hierarchies for the candidate blocks of 
the previous frame and the template block of the current 
frame are firstly constructed. In each block sum pyramid 
hierarchy, as shown in Fig. 1, each pixel in the m-th level 
is the sum of 2 x 2 neighboring pixels in the (m-1)-th level, 
that is  
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For an N x N  block (N = 2M), The m-th level SAD is 
defined as: 
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Then we can obtain the following multiresolutional 
Minkowski inequality [2]. 
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Fig. 1. Block Sum Pyramid Hierarchy for a 8 x 8 
block 

 

The pyramidal structure of the BSPA  makes it more 
efficient in computation than the SEA, and both methods 
achieve the same performance with the full search 
algorithm (FSA). The BSPA is summarized as follows. 

1. Select the motion vector of the corresponding 
block in the previous frame as the initial guess, 
and the SAD corresponding to the motion vector 
is chosen as the current SAD. 

2. Construct the block sum pyramids for each 
candidate block in the search area of the previous 
frame. 

3. Construct the block sum pyramid for the template 
block. 

4. For a candidate block, compare its hierarchical 
SADm  values in (5) with the current SAD and 
check the following. 
A. If the calculated SADm is larger than the 

current SAD, eliminate this candidate and 
got to Step 5. 

B. If the calculated SADm is less than the 
current SAD, set m = m -1 and repeat Step 4 
until down to the bottom level. Replace the 
current SAD with the calculated SAD at the 
lowest level (m = 0) and select this 
candidate block as the current match. 

5. Repeat Step 4 for other candidate blocks until all 
the candidate blocks are compared. 

 

2. THE PROPOSED FAST MOTION ESTIMATION 
ALGORITHMS 

As mentioned above, the methods described in [1-2] 
just focused on reducing the cost of block-matching 
distortion computation. Though the computation cost can 
be effectively reduced using these two methods, they are 

still time consuming when the search area becomes large. 
In ITU-T H.263 standard the search area is a 32 x 32 
window (normal mode) or a 64 x 64 window (unrestricted 
motion vector mode), which leads to up to 1024 and 4096 
motion vector candidates respectively. The extra 
computation and memory costs to compute and store the 
block sum pyramids are also remarkable for large search 
area.  Hierarchical search algorithms can drastically 
reduce the number of the searching candidates so as to 
reduce the aforementioned costs while maintaining 
comparable matching quality. In fact, the intrinsic 
multiresolution nature of the block sum pyramid algorithm 
makes it easy to be performed in a hierarchical manner.  

An image may include fast-motion and slow-motion 
objects simultaneously. Recently, some search algorithms 
were proposed for fast motion estimation based on the 
assumption that most of the objects’ motions are zero or 
relatively small [6-7]. These algorithms have proven to 
have satisfactory performance on the slow-motion videos 
such as head-and-shoulders video in videophone 
applications. These fast algorithms, however, cannot treat 
the objects with fast motions very efficiently because the 
real motion vectors may be far away from the position of 
the target block. Adopting the motion vectors of the 
spatially/temporally neighboring blocks to predict the 
target block’s motion vector can partly solve the problem 
since there may exist high spatial/temporal correlation 
among these motion vectors. There are, however, some 
exceptional cases where the motion vectors cannot be 
predicted well by simply adopting the spatial/temporal 
correlation followed by fast search algorithms suitable for 
small search range as in [6-7]. For example, in some video 
with many high-activity objects such as ball game, the 
spatial/temporal correlation among the motion vectors in 
some areas may be pretty low. A new fast algorithm which 
can adapt to various image contents is thus required. 

2.1 Hierarchical Motion Estimation Using Block Sum 
Pyramid 

Firstly, we propose an algorithm which takes 
advantage of both the high efficiency of matching criteria 
computation in BSPA and small number of matching 
candidates in hierarchical search algorithms. The proposed 
Hierarchical Block Sum Pyramid (HBSP) algorithm is 
described as follows. 

The proposed HBSP algorithm: 

1. Construct the block sum pyramids for each 
non-overlapping block in the search area of the 
previous frame. 

2. Construct the block sum pyramid for the template 
block. 

3. At the top level (m = M), search the block with 
minimum absolute difference, that is 
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where RM is the predefined search pattern at 
Level M. Then compute SAD0(T,XI,J) and use it as 
the current SAD refernce: SADcurrent. 

4. Search the best matching block with minimum 
SAD value within the reduced search grid Rm 
using the Steps 4-5 of  BSPA described in Sec. 1. 

5. Set m = m-1, shrink the search area and reduce 
the step size (2m) then repeat Step 4. The size of 
the search area could be a function of the 
minimum SAD value obtained from the upper 
level. The simplest case is to halve both the 
horizontal and the vertical sizes used in the upper 
level. 

6. Repeat Step 5 until it goes down to the bottom 
level. 

If  the Three Step Search pattern is adopted for Rm, a 
Hierarchical Block Sum Pyramid Three Step Search 
(HBSPTSS) algorithm is formed. The detailed search steps 
are illustrated in Fig. 2. For simplicity and without loss of 
generality, the block size is assumed to be 8x8 in Fig. 2. 
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Fig. 2. The top-down hierarchical search steps of the 
proposed HBSPTSS for 8x8 block size (a) Level 3 
(coarsest), (b) Level2, (c) Level 1, (d) Level 0 (finest). 

2.2 Hierarchical Fast Search Based on the 
Spatial/Temporal Correlation 

The study in [3] showed that there often exists high 
spatial/temporal correlation for the motion vector values of 
adjacent blocks since they might belong to the same 
moving object and have similar motion behavior.  
Therefore it often makes sense to predict the motion vector 
value of the template block from the motion information 
of its spatially or temporally adjacent blocks. As shown in 
Fig. 3, we take into consideration the correlation between 
the motion of the template block and its 
spatially/temporally adjacent blocks to predict a proper 
initial search point to speed up the searching process. Most 
of the macroblocks’ motion vectors can be  predicted 
very well using the spatial/temporal correlation among the 
macroblocks, and some existing fast search algorithms can 
be adopted to estimate the motion vectors in small search 
areas very efficiently. (e.g., Block-Based Gradient Decent 



Search (BBGDS) in [6]) However, in case a macroblock 
belongs to an different fast moving object from its 
neighboring macrobloks’, the prediction method will fail 
to find a proper initial guess. In this case, the 
aforementioned HBPSTSS will be much efficient to fast 
estimate the motion vectors within a large search region. 
In this paper, we propose a hybrid scheme versatile to 
various image contents. 

The proposed hybrid motion estimation scheme: 

Compute the SAD values with motion vectors 
corresponding to the neighboring blocks of the 
template block in the current frame and the previous 
frame. Then choose the motion vector with minimum 
SAD value as the initial guess and its associated SAD 
is set to be SADcurrent.  

A. If SADcurrent is less than a predetermined 
first threshold SADth1, the search process 
terminates and the motion vector obtained 
above is chosen as the best match. 

B. If  SADcurrent is larger than SADth1, but less 
than a second threshold SADth2, use BBGDS 
to search the best match. 

C. If  SADcurrent is larger than SADth2, use 
HBPSTSS to search the best match. 
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Fig. 3. The adjacent blocks with spatial and temporal 
correlation to the template block. 

2.3 Complexity Analysis 

The computational complexity analysis for the 
proposed algorithm is divided into two parts: 1) the cost 
for constructing the hierarchical  block sum pyramids; 2) 
the cost for hierarchical matching. Assuming the image 
size is W x H, it requires HW

m
×

4

3  to construct the 

block sum pyramids for all non-overlapping candidate 
blocks at the m-th level. With block size of 16 x 16, the 
number of levels is 4, the total number of addition 
operations per macroblock is 
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which is much less than the number: 
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 required for the BSPA [2]. For 

each template block, this computation overhead will cost 
only about 0.5 cadidate matching operations. 

The total number of matching cadidates required for the 
proposed HBSPTSS is the same with the TSS algorithm 
which is much less than the matching operarions 
performed in FSA, SEA, and BSPA. The computation cost 
required for the HBSPTSS depends on the probabilities of 
in which levels the matching computations being finished. 
The probability distribution is highly related to the motion 
statistics of the image contents. A comparison of the 
computation costs between TSS and HBSPTSS is shown 
in Table. I. It’s evident that, when compared to the TSS 
method, the HBSPTSS algorithm can achieve significane 
computation saving without sacrificing the performance. 
The memory cost required for the proposed algorithm to 
store the block sum pyramids is also much less than the 
BSPA since only a reduced set of block sum pyramids are 
computed and stored. 

TABLE I Comparison of the computation costs of TSS 
and the proposed HBSPTSS 

 Miss_am Salesman Football 

TSS 100% 100% 100% 

HBSPTSS 83.7% 45.3% 67.8% 

 

The computation cost of the proposed hybrid motion 
estimation scheme can also be easily evaluated by 
computing the probability of each search strategy (no 
search, BBGDS, and HBSPTSS) and its associated 
computations (number of addtions/substractions). 

3. SIMULATION RESULTS 

 

The PSNR performance comparison of our proposed 
algorithm with FSA, TSS, BBGDS, and BSPA is shown in 
Fig. 4. If the proposed HBSPTSS is adopted, the PSNR 
performance is actually the same with TSS, while the 
HBSTSS achieves significant computation saving than the 
TSS depending on the motion statistics of the test image 
sequences as shown in Table. I. The proposed hybrid 
search algorithm with spatial/temporal correlation can 
achieve comparable PSNR performance for both slow and 
fast motion conditions compared to other existing methods, 
and the computing power required is pretty low. Table. II 
shows the average PSNR performance comparison of the 



proposed hybrid search scheme with FSA, BSPA, TSS, 
and BBGDS for  the three sequences: Miss_am (slow 
motion), salesman (medium motion) and Football (high 
motion).  
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Fig. 4. Comparison of PSNR performance of various 

algorithms. 

 

 

TABLE II Performance evaluation of various algorithms 

 Miss_am Salesman Football 

Method DFD PSNR Comp DFD PSNR Comp DFD PSNR Comp 

FSA 1.80 39.61 100 2.71 35.85 100 6.18 28.49 100 

BSPA 1.80 39.61 56.14 2.71 35.85 21.26 6.18 28.49 23.52 

TSS 1.95 39.07 3.34 2.88 35.11 3.34 7.59 26.30 3.31 

BBGDS 1.95 39.22 1.27 2.76 35.63 1.11 7.02 26.79 1.63 

Proposed 1.95 39.18 1.53 2.76 35.71 0.70 6.33 28.19 1.37 

 

4. CONCLUSIONS 

In this paper, we firstly propose a hierarchical three 
step search based on pyramid hierarchy. Hierarchical 
Minkowski inequality is applied to reduce the complexity 
of the sum of absolute difference (SAD) computations. A 
top-town procedure is developed to hierarchically search 
motion vectors from coarse to fine so that the total number 
of matching points is reduced drastically, which also 
reduces the computation and the memory costs for the 
construction of block sum pyramids. To further reduce the 
computation cost, by combining with the proposed 
HBSPTSS method and the BBGDS method in [6] as well 
as exploiting the spatial/temporal correlation, we also 
propose a novel hybrid motion estimation scheme which 
can achieve high PSNR performance for both low and 
high motion video at extremely low computation cost. The 

proposed hybrid motion estimation scheme can thus be 
adopted in wide application fields with real-time 
requirement. 
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