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1. INTRODUCTION

Multimedia systems, which are the combination of text, graphics, speech, audio, and video, have a
wide variety of applications. Networked multimedia services, such as teleconferencing, video on
demand, and distance learning have been emerging in various network environments. In these
applications, it is often needed to adapt the bit-rate of the video bit-streams to the available network
bandwidth over various channels [1-2,13-16]. In heterogeneous networks as depicted in Fig. 1, bit-
rate adaptation allows different end-users over different sub-networks to achieve different Quality
of Service (QoS) based on their available network bandwidths. For some real-time video coding
applications, the scaling of bit-rates can be achieved through the rate control in the video encoder
[16]. However, for many other applications, such as video on demand, this can not be done since

the video is already compressed at a certain bit-rate and stored in the server.

Video conferencing is a natural extension to voice-only communications. Due to the rapid progress
in digital video processing, low cost video codecs, networking technologies, and international
standards, video conferencing is becoming more and more widely used. Video conferencing can be
over a circuit-switched network such as PSTN and ISDN, or over a packet-switched network such
as IP-based network and Asynchronous Transfer Mode (ATM) network. International
Telecommunication Union (ITU) has established various video conferencing terminal standards for
different network environments. Some ITU standards are: H.320 [3] for N-ISDN, H.310 [4] and
H.321 [5] for ATM, H.322 [6] for quaranteed QOS LANs, H.323 [7] for non-quaranteed QoS
LANSs, and H.324 [8] for PSTN.



Multipoint video conferencing is a natural extension of point-to-point video conferencing. With the
rapid growth of video conferencing, the need for multipoint video conferencing is also growing. For
a multipoint video conference over a wide-area network, the conference participants are connected
to a multipoint control unit (MCU) in a central office. A video combiner in the MCU combines the
multiple coded digital video streams from the conference participants into a coded video bit stream,
and sends it back to the conference participants for decoding and presentation. The application
scenario of four persons participating in a four-point video conference is shown in Fig. 2. An
example of MCU with the gateway function between H.323 and H.324/1 terminals is illustrated in
Fig. 3. The conference participants can link to the MCU through standard H.323 or H.324/1
terminals. The MCU combines the videos of the participants, converts the bandwidths of the
combined videos to adapt to the participants’ channel capacities and send back the combine video
to each participant. The Multipoint Controller (MC) function is responsible for controlling the
multipoint connection, and the Multipoint Processor (MP) deals with video combining and rate

adaptation.

For rate adaptation, video transcoding is generally used to convert a previously compressed video
bit-stream into another lower bit-rate video bit-stream (for lower bit-rate to higher bit-rate
adaptation, zero stuffing is often used). Video transcoding has been studied recently in several
literatures [13-18] because of its wide range of applications. In general, video transcoding deals
with converting a previously compressed video signal into another compressed signal with a
different format or bit rate. As the number of different video compression standards (e.g., H.261 [9],
H.263 [10], MPEG-2 [11], MPEG-4 [12]) increases and the variety of bit rates at which they are
operated for different applications, there is a growing need for video transcoding. In this article, we

will focus on the specific problem of transcoding for bitrate reduction.

2. SINGLE POINT VIDEO TRANSCODING ARCHITECTURES

A simple architecture for the transcoder uses open-loop transcoding where the incoming bit-rate is
down-scaled by truncating the DCT coefficients or performing a requantization process [16-17].
Since the transcoding is done in the coded domain, a very simple and fast transcoder is possible.
However, the open-loop transcoding produces an increasing distortion caused by the drift due to the
mismatched reconstructed pictures in the encoder and the decoder, which results in unacceptable
video quality in many applications. Drift-free transcoding [18, 22-23] is possible by using a decoder

to decode the incoming video and then using an encoder to re-encode the video at the lower rate.



The most straightforward approach to implement a transcoder is to cascade the decoder and encoder
directly as shown in Fig. 4. And it’s implementation based on the H.263 standard is shown in Fig. 5.
This architecture, however, is too computationally costly to be adopted in practical real-time
applications since it requires one video decoder and one video encoder for each transcoding

operation.

2.1 Pixel-Domain Video Transcoders

With the cascaded architecture shown in Fig. 5, the motion vectors adopted in the video decoder

and encoder are in general not the same, the architecture can be expressed as follows:
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where s/ ,V 1 stands for the shifi operation which locates the block translated by motion vector

¥, for the n-th frame in the i-th stage frame memory.

Since a pre-encoded video stream arriving at the transcoder already carries many useful information
such as picture type, motion vectors, quantization step-size, bit-allocation statistics, and so forth, it
is possible to construct transcoders with different complexity and performance in terms of coding
efficiency and video quality. In Fig. 5, intuitively, most of the motion information and the mode
decision information received in the video decoder can be reused in the video encoder without
introducing significant degradation on visual quality. Based on this assumption, Keesman et al. [18]

proposed a simplified architecture with less computational cost by reusing in the encoder stage the



same motion vectors from the decoder stage (i.e., Z,,(I) = Z,,(Z) = V,). With motion vector reuse,

Equation (5) becomes
DCT(R®) = DCT(R")-DCTSIEZ.VP]) (6)

which leads to the simplified architecture shown in Fig. 6. This simplified architecture can save the
motion estimation operation, one frame memory, and one IDCT operation. In general, the motion
vector reuse approach is considered as an efficient scheme for complexity reduction for motion
estimation for video transcoding. It was, however, shown in [13-14] that, in many applications the
reuse of the incoming motion vector results in non-optimized outgoing motion vectors due to the
significant quantization errors between the first stage quantizer and the second stage quantizer.
Motion vector refinement schemes are proposed in [13-14] to keep the computation cost minimum
while achieving the performance close to that obtained in the cascaded transcoder architecture using

full-scale motion estimation.

2.2 DCT-Domain Video Transcoders

In the pixel-domain video transcoder shown in Fig. 6, the coded quantization errors of the second
stage quantizer are decoded into pixel domain through DCT transform and then stored in the frame
memory in pixel values. The motion compensation operation is performed in the pixel domain and
then transformed into the DCT domain for the prediction operation. The whole process requires one
DCT transform, one IDCT transform, and one block shift operation (motion compensation). This
operation can also performed in the DCT domain without the need of DCT/IDCT computation for
encoding/decoding process. Some special treatments, however, are required for the so-called
“DCT-domain inverse motion compensation (MCD™ in abbreviation)” to perform the inverse
motion compensation operation fully in the DCT domain and were investigated in the literature [19-
21, 23]. Fig. 7 shows the operations of the inverse motion compensation performed in pixel-domain
and DCT-domain. This inverse motion compensation operation, regardless of being performed in
the pixel domain or the DCT domain, is the most computationally critical part for video transcoders.
To reduce the computational complexity of the inverse motion compensation process, it’s possible
to perform this process in DCT domain thus no DCT/IDCT operation is required. As shown in Fig.
8, the problem can be interpreted as computing the elements of a target DCT block B from the
elements of its four neighboring DCT blocks, B;, i = 1 to 4, where B = DCT(b) and B; = DCT( b;)



are the 8x8 blocks of the DCT coefficients of the associated segmented blocks b and b; of the

image data in the pixel domain.

The 8x8 2D-DCT transforms a block x = {x(n,m)} Z,mzo in the spatial domain into a matrix of

frequency components X = {X (u, v)} according to the following equation
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In a matrix form, define the 8-point DCT matrix S = {s(u, n)} Z,n=0 where

s(u,n) = C(2u) cos@zqgl EHTE 8)

Then,
X =5xS' 9)

A DCT-domain approach to exactly solve the problem was firstly proposed in [5], which
represented the target pixel-domain block, b, as the sum of the four component blocks which are
denoted as b4, bas, b3y, and by corresponding to the four adjacent DCT blocks respectively as
shown in Figs. 9 and 10.

Thus the target pixel-domain block b can be expressed as:

b =bis+ b3+ b3y + by (10)
Chang and Messerschmitt [19] firstly used some geometric transforms to derive the relationship
among the elements of the DCT blocks B and B; ~ B4 from the spatial geometric relationship among
the associated pixel-domain blocks b and b; ~ by so that the elements of the target block B can be
computed from the elements of the neighboring blocks B; ~ B4 directly in the DCT domain without
the need of full decompression of the DCT blocks into the pixel domain. An example of the
geometric relationship between the block bs and bs; is discussed below. Other geometric
relationships can be obtained in similar manners.

The relation of the pixel-domain block b4; and the block b4 can be formulated by using a geometric

transform as
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where [ e and / ,, are identity matrices of size hysxh, and w,xw, respectively. Equation (11) is also

illustrated in Fig. 11. Thus, through the distributive property of the DCT transform (viz.
DCT(AB)=DCT(A)DCT(B))

B41 = Hh4B4Hw4 (12)
where B, =DCT(b,,), B, =DCT(b,) , 4, =DCTfn, ) ,and H, =DCTf, )

Through the geometric transform, the DCT coefficients of the target block B can be expressed as

4
B=SNH,BH, (13)

Direct computation of Equation (13) requires 8 matrix multiplications and 3 matrix additions. Note

that, assume /44 = h and w4 = w, the geometric transform matrices is tabulated as Table 1. From
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Using these equalities, the number of operations in Equation (13) can be simplified as 6 matrix

multiplications and 3 matrix additions. Because /, and H, are deterministic, they can be pre-

computed and then pre-stored in memory. Therefore, there is no DCT transform operation required

for the computation of Equation (13).
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The computation requirement of Equation (13) is still not efficient enough for the computation of
MCD™. In practical applications, the matrices, B; ~ By, are very likely to be sparse, since they
represent the DCT coefficients of the quantization errors of the incoming DCT blocks from the
second stage quantizer and the errors are often insignificant. Due to the sparseness of these matrices,
Equation (13) can be computed efficiently using some existing sparse matrix manipulation
algorithms. Moreover, [20-21] proposed a matrix factorization scheme which was originally
proposed in JPEG coding standard [22] to factorize the DCT transform matrices S into the product
of some matrices with simple and regular architectures as follows:

S =DPB,B,EA A, A, (14)
where D is a diagonal matrix consisting of real entries, P is a permutation matrix, 4;’s and B;’s are
sparse matrices with entries 1 and —1, and E is also a sparse matrix with real entries. Without taking
into account the inherent sparseness of the DCT matrices, this matrix factorization scheme can
achieve more than 40% computation saving and does not introduce any distortion.

On the other hand, [23] proposed a scheme to simplify the computation by approximating H, and

H_  using rounded matrices with elements which contain only a small number of powers of two.

Thus the multiplication operation is simplified as addition + shifting instead of multiplication

which leads to reduction of about 81% compared with the pixel-domain computation

In [26], an approach based on shared information in a macroblock was proposed to reduce the
computation of DCT-domain inverse motion compensation. As depicted in Fig. 12, instead of
sixteen contributing blocks for the four 8x8 target blocks when we treat the target blocks
individually, there are only 9 different anchor blocks with five of them are shared among multiple
target blocks and four of them are not shared, since the four target blocks belong to the same
macroblock and adopt the same motion vector. For example, in Fig. 12, M;, 1 = 0 to 3 are the
contributing blocks to 0" and N,, i = 0 to 3 are the contributing blocks to Q", evidently, the target
blocks QM and QN share two anchor blocks, i.e., M; = Ny and M; = N,. Similarly, it’s easy to show
that every two adjacent target blocks share two anchor blocks, and the four target blocks share the
center anchor block. Using the shared information in a macro block as well as applying some
simple pre-processing before and post-processing after the geometric transform mentioned above,

about 47 % improvement was reported [26].



3. MULTI-POINT VIDEO TRANSCODING ARCHITECTURES

A multipoint videoconference is a videoconference that involves three or more conference
participants. With the rapid growth of video conferencing, the need for multipoint video
conferencing will also grow. In the multipoint video conference, the conference participants are
connected to a Multipoint Control Unit (MCU) in a central office. A video bridge in the MCU
combines the multiple compressed input video streams into a single bit-stream and sends it to the
conference participants for presentation. Multi-point video transcoders are required for video
bridges to transcode the input video streams into the output video bitstreams with the required bit
rates and formats. Various realizations of multi-point video transcoder can be constructed by using

the single point transcoding architecture mentioned above.

A straightforward realization of multi-point video transcoder, named Type I, is shown in Fig. 13.
With Type I realization, the input data for the video transcoder consists of multiple video streams,
which are received from corresponding terminals through heterogeneous network environments and
contain encoded data based on H.263 standard. The video stream could be transmitted through
either of GSTN, ISDN, and LAN transmission media with various bandwidth requirements. At the
first stage, the input bit-streams are written into the input buffers from outer networks respectively.
The decision of the input buffer size depends on the specifications of delay and network
characteristics. For simplicity and without loss of generality, we assume each video stream is
encoded in QCIF format and each conferee can see 4 participants in a CIF frame in a continuous
presence fashion. In Type I realization, the received video streams in QCIF are firstly decoded
through variable-length decoders (VLD) and then selected and combined into a CIF frame through a
number of multiplexers and video combiners, as shown in Fig. 13. For video combining, the QCIF
video bitstreams are partially decoded into the DCT coefficients of the video date and then assigned
to the corresponding locations in the CIF frame. An example of the video combining of four QCIF
frames into a single CIF frame is illustrated in Fig. 14. After these operations, a CIF bit stream is
obtained which will require larger data rate. In the next stage, the simplified transcoding
architectures proposed in the previous section are adopted to transcode the video data in CIF format
to meet the required bit rates. Moreover, the rate control mechanism provides feedback messages to
the transcoders for commanding the output data rates according to the contents of output buffers.

The output buffers may have different sizes and different control schemes due to the heterogeneous



network environments.

Another realization scheme, called Type II, is shown in Fig. 15. In contrast to the architecture
shown in Fig. 13, the input video streams are firstly transcoded in QCIF format and then the
transcoded bitstreams are combined into a CIF frame through a number of multiplexers and video
combiners. As depicted in Fig. 15, to meet the various bit-rate requirements, more than one
transcoder might be required for the same video stream to generate multiple QCIF video data with
different bit rates. This problem can be avoided by adopting a scalable video transcoder which can
generate multiple video data with different target bitrates in a single bitstream. With this
multiresolution feature which is supported in some forth-coming video coding standards such as
MPEG-4 and H.263+, only a single video transcoder for each conferee is required to meet multiple
channel bandwidth requirements. This type of realization is shown in Fig. 16. The main advantage
of the Type III realization is that, since a video bitstream from a participant is often shared by many
other participants, this architecture can make full use of the resource sharing property then Type I

thus reducing the computation cost drastically.

Note that, the video combining in Type II and Type III realizations is performed in H.263 bitstream
level rather than the DCT coefficients combining in Type 1. The multiplexing unit for the video
combiner is the GOB. Because of the difference of GOB allocations between CIF and QCIF, we
need some modifications about the structure of GOB’s. It may combine two GOB’s of QCIF into a

GOB of CIF in series connection.

4. SUMMARY

Video transcoding is an efficient way for rate adaptation and format conversion in networked video
applications, especially for bitrate reduction. We discussed various architectures for implementing
video transcoders in video conferencing. A straightforward approach to implement video transcoder
is to cascade a video decoder followed by a video encoder. This cascaded architecture can avoid the
drift problem, while its high complexity is unacceptable in real-time applications. Based on motion
vector reuse scheme, a simplified pixel-domain video transcoder achieving significant computation
saving can be constructed, though it may not perform as good as cascaded architecture in video
quality. The simplified transcoder architecture can also be implemented in the DCT-domain without

performing the DCT/IDCT operations. Instead, this approach uses an interpolation method to



estimate the DCT coefficients of a shifted macroblock. Some approaches were proposed to further

reduce the complexity.

Three multipoint video transcoding architectures are discussed in this article. Different architectures

can lead to different complexities in different applications.
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Fig. 10 Formation of the target block b from parts of b; ~ b4 through geometric transform
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