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Non-Standard Coding Techniques

Vector Quantization (VQ)
Fractal coding

Subband and Wavelet coding
Model-based coding
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Vector Quantization
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LBG Algorithm

» Linde, Buzo, Gray, 1980: Lloyd algorithm generalized for VQ

v

Best representative Best subdivision
vectors of training set
for given subdivision for given
of training set representative vectors

A

» Assumption: fixed codeword length
» Code book unstructured: full search

VLC VQ

= Chou, Lookabaugh, Gray, 1989: extended LBG algorithm for
entropy-coded VQ

= Lagrangian cost function: solve unconstrained problem
rather than constrained problem

min{D+AR}
= Unstructured codebook: full search for min{D+AR}

The most general coder structure:
Any source coder can be interpreted as VQ with VLC
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Lattice Vector Quantization
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8D VQ of Memoryless Laplacian Source
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Vector Quantization

 Highly asymmetrical encoding and decoding complexity
* Encoding complexity depends on the codebook size
* Decoding is done simply by table lookup
» Codebook design usually is an iterative process
which involves off-line training
+ Different codebook designs result in different quality
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Fractals
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Affine Transformation

Maps points into new points according to the transform:

1=12211001 " [F]

» Can model scaling, translation, rotation, etc.
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Fractal Image Coding

Partition the image
into DOMAIN regions

!

Choose a set of allowable
RANGE regions

l

Choose the class of
affine transforms

l

Point to the first DOMAIN |

l

Find the affine transform

and the best matched RANGE

!

| Store the affine coefficients |

Last
DOMAIN ?

Point to next
DOMAIN

Output header and the
packed affine coefficients

Fractal Image Decoding

!

Read domain partition info
and unpack affine coef.

Replace DOMAIN with transformed
data using the affine coefficients

!

Create memory buffers for the
DOMAIN and RANGE screens

l

Initialize the RANGE
screen buffer to an
arbitrary initial state

Point to the first DOMAIN |

[E—

| Store the affine coefficients |

Point to next
DOMAIN

Output the
final DOMAIN

screen

Copy contents of DOMAIN
screen to RANGE screen
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Fractal Coding

- Real-time encoding is a problem

- Currently quality may not be better than JPEG and MPEG
(especially for high quality applications)

+ Real-time decoding is simple, can be implemented using
regular PC

+ Resolution independent

+ Relatively new, may have more room for improvement

Interpolation Error Coding
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Interpolation Error Coding (Cont.)
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Predictive Pyramid Coding (Cont.)

N

subsampling factor

Predictive Pyramid Coding (Cont.)
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Interpolation Error Coding vs. Pyramid

Resolution layer #0, interpolated to original size for display

Interpolation error coding Pyramid

Interpolation Error Coding vs. Pyramid (Cont.)

Resolution layer #1, interpolated to original size for display

Interpolation error coding Pyramid

Page 11

11



Interpolation Error Coding vs. Pyramid (Cont.)

Resolution layer #2, interpolated to original size for display

Interpolation error coding Pyramid

Interpolation Error Coding vs. Pyramid (Cont.)

Resolution layer #3

Interpolation error coding Pyramid

(original)
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Open-loop Pyramid (Laplacian Pyramid)
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Subband Coding

. Synthesis
i Analysis .
Iransmitter  Gisbank filterbank Receiver
Input > F (o) k * Q kO |- Reconstructed
signal g ™ ! » Gy(w) signal

> Fio) =k § = Q Gy(0)

Ky + —™Gu(®)

L Fiy () | kM* = Q

e
£

1
= Number of degrees of freedom is preserved: —+-—+..+-—=1
ko k] kM

“Critically sampled filter bank”
m Perfect reconstruction filter bank required

Two-Band Analysis Filter Band

amplitude

low band high band

frequency

0 Wi2 W

* To eliminate aliasing distortion, the synthesis and
analysis filters must have certain relationships
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Two-Band Subband Codec

— H@ —@—///—@- Go(2)

X(z) coding and Y(z
- transmissio& Pz upsample

@ -@—//—@ 6,2

downsample by a factor of 2

J

— HO(z) : the z-transform of the low-pass analysis filter
— H1(z) : the z-transform of high-pass analysis filter

— GO0(z) and G1(z) are the corresponding synthesis
filters

— The downsampling factor is 2, so as the upsampling

Low-pass Subband Generation and Recovery

A low pass filtered
/ \ spectrum
P Frequency
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High-pass Subband Generation and Recovery
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Perfect Reconstruction in Subband Coding

The reconstructed output in z-transform notation:

Y(2)=G,(2) X, (2) + G,(2) ¥, (2)
where y (z) = %[HO(Z) X (z) + Hy(—2) X (-2)]
Yi(2) = %[Hl (2) X (2)+ H,(-2z) DX (-2)]

where the aliasing components from the downsampling of
the lower and higher bands are given by H,(-z)X(-z) and
H.(-z)X(-z) respectively

The  y()= %[HO(Z) [G,(2) + H,(2) [G,(2)]X(2)
n
+ %[Ho(—n [G,(2) + H,(~2) [G,(2)]1 X (-2)
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Perfect Reconstruction in Subband Coding

The first term is the desired reconstructed signal, while the
second term is aliased components

So, Gy(z2)=H,(-z) and G(z) =-H,(=2)
sets

With such a relation between the synthesis and analysis
filters, the reconstructed signal now becomes:

Y(z) = %[Ho (2) [H,(~2) - Hy (~2) [H, (2)}X(2)

Example: Two-channel Filter Bank with Perfect
Reconstruction

m Analysis filter impulse responses: m Frequency responses:
e Lowpass band:

|
E(—l,+2,+6,+2,—1) IF G

]

e Highpass band:

|F

1
4 (FL=2.41) |

—_
o

m Synthesis filter impulse responses:

Frequency response
®

e Lowpass band:

o

|
—(+L+2,+1) 0 T bis
4
2
e Highpass band: Frequency

1
1(+l’+2’_6’+2’+1)
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Quadrature Mirror Filter

m QMFs achieve aliasing
cancellation by choosing

F(@)=F(@+x) | g
=-G(0)=G(0+7)

m Highpass band is the mirror
image of the lowpass band
in the frequency domain

Example:
16-tap QMF filterbank

| 'Y i

| ! !
-sl‘ ; | ‘:
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LI T

frequency ®

Subband and Wavelet Coding

amplitude

frequency

0 f 2f, 3f 4f, 5f 6f

7, 8f,  9of, 10f,

Subband Decomposition

amplitude

frequency

0 f 2,  a4f 8f,

16f,

Wavelet Decomposition
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Subband and Wavelet Coding (Cont.)

.......

Subband and Wavelet Coding (Cont.)
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2-D Discrete Wavelet Transform
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2-D Discrete Wavelet Transform (Cont.)
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Similarities among Image Subbands

Zerotree Coding of Higher Bands

» The higher order wavelet coefficients are coded
with the embedded zero-tree wavelet (EZW)

 The method

— based on the concept of quantization by successive
approximation,

— exploits the similarities of the bands of the same
orientation.
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Principle of Successive Approximation

12

— As shown above, the quantized length, can be
expressed as

Zerotree Coding: Quadtree Representation of

Higher Bands

* Subimages of lower bands have quarter dimensions of their higher

bands

* A quad-tree representation of the bands of the same orientation for
a 10-band splitting is shown below (three-stage wavelet transform)

+ If a coefficient in LHj is zero, it's more likely that its children in
higher bands of LH, and LH, will also be zero => “zero tree”

HL;  HL,
LL | =
LH,| P @;@ HL,
LH, @ A,
LH, HH,
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Embedded Zerotree Wavelet Algorithm

T S —————, 33| = 1dea: Conditional coding of
XXXX
XXXX all descendants (incl.
. Parent® children)
X N | n Coefficient magnitude >

\ | threshold: significant
\ xx Children® coefficients

XX » Four cases

XX

XX \ e ZTR: zero-tree, coefficient
and all descendants are
not significant

e |Z: coefficient is not
significant, but some
descendants are

XXXX

XXXX significant

XXXX

XXXX e POS: positive significant
XXXX
XXXX . Descendants”® e NEG: negative significant

XXXX
XXXX |

Embedded Zerotree Wavelet Algorithm (Cont.)

For the highest bands, ZTR and |Z symbols are merged into one
symbol Z
Successive approximation quantization and encoding
= |nitial “dominant” pass
» Set initial threshold T, determine significant coefficients
= Arithmetic coding of symbols ZTR, IZ, POS, NEG
= Subordinate pass
= Refine magnitude of coefficients found significant so far by one bit
(subdivide magnitude bin by two)
= Arithmetic coding of sequence of zeros and ones.
= Repeat dominant pass
= Set previously found significant coefficients to zero
» Decrease threshold by factor of 2, determine new significant
coefficients
= Arithmetic coding of symbols ZTR, IZ, POS, NEG
= Repeat subordinate and dominate passes, until bit budget is
exhausted.
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A Coding Example of EZW (Shapiro 93)

63 |-34 |49 10| 7 13 -12 7
312314 13| 3 4 -1
15 14| 3 12| 5 -7 9
9 7|14 8| 4 -2 2
5 4 47| 4 6 -2 2
3 3 2|3 =2 4

-3 4| 3 6

11 6| 0 4 4

A Coding Example of EZW (Cont.)

Subband Coef Value Symbol Rec Value
LL3 63 POS 48
HL3 -34 NEG -48
LH3 -31 1z 0
HH3 23 ZTR 0
HL2 49 POS -48
HL2 10 ZTR 0
HL2 14 ZTR 0
HL2 -13 ZTR 0
LH2 15 ZTR 0
LH2 14 1z 0
LH2 9 ZTR 0
LH2 7 ZTR 0
HL1 7 z 0
HL1 13 z 0
HL1 3 z 0
HL1 4 z 0
LH1 -1 z 0
LH1 47 POS 48
LH1 -3 z 0
LH1 2 z 0
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Features of The EZW Algorithm

The use of zero trees reduces the number of symbols to be
encoded

The use of a very small alphabet to represent an image
makes adaptive arithmetic coding very efficient

The maximum distortion of each pass is bounded by the
threshold used in the pass

At any given pass, only the coefficients with magnitudes
larger than the current threshold are encoded nonzero =>
prioritize the coefficients of different importance

With the successive approximation process, the encoding
and decoding can stop at any point => not only makes
possible an extremely precise bit-rate control, but also
achieves the best possible quality at an given bit-budget
Embedded spatial/SNR scalability

Embedded Zerotree Wavelet Algorithm (Cont.)

Decoding: bitstream can be truncated to yield a coarser
approximation: “embedded” representation

Further details: J. M. Shapiro, “Embedded image coding
using zerotrees of wavelet coefficients,” IEEE Transactions
on Signal Processing, vol. 41, no. 12, pp. 3445-3462,
December 1993.

Enhancement SPIHT coder: A. Said, A., W. A. Pearlman, “A
new, fast, and efficient image codec based on set
partitioning in hierarchical trees,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 63 , pp.
243-250, June 1996.

JPEG-2000 standard similar to SPIHT
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Video Coding with Wavelet Transform

DCT-based

encoder (MPEG-1)
Video
in bitstream
— | n-band wavelet MVs

decomposition

motion compensation at the last
stage and refinement at other —| EZW —
stages

Set Partitioning in Hierarchical Trees (SPIHT)

= A Said, A., W. A. Pearlman, “A new, fast, and efficient
image codec based on set partitioning in hierarchical trees,”
IEEE T-CSVT, vol. 63, pp. 243-250, June 1996.
= JPEG-2000 standard is similar to SPIHT (EBCOT)
= Preliminary Algorithm
= Output n = floor(log,(max;,{|C; [}))
= Qutput 4, followed by the pixel coordinate (k) and sign
of each of the coefficients such that 2" < |C | < 21
(sorting pass)
= Output the nth MSB of all the coefficients with |C; | = 2",
in the same order used to send the coordinates
(refinement pass)
» Decrease n by one and go to step (2)
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Set Partitioning in Hierarchical Trees (SPIHT)

= Function used in the sorting pass

= Assume O(ij) represents a set of coordinates of all off-
spring of node (i,j), that is O(i))) = {(2i,2)). (2i, 2j+1), (2i+1,2)),
(2i+1,2j+1)}

= Define D(i,) as a set of coordinates of all descendants of the
node (ij), and H, a set of coordinates of all spatial
orientation tree

= Finally define L(i,j) = D(i,j) - O(i,))

Set Partitioning Rules

= the sets {(i,j)} and D(i), for all (i,j) “member of O H

= If D(iyj) is significant, it is partitioned into L(i,j) plus the four
element sets with (k,/) O O(i,j)

= If L(ij) is significant, it is partitioned into the four sets D(k,]/),
with (k,/) O O(ij)

= Each of the four sets now has the format of the original set,
and the sample partition can be used recursively

SRIMER

AN
55|

e
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Performance of SPIHT

New methng t alithmeticdczde
— — — — New method, binary-uncode
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Subband Coding vs. Transform Coding

» Transform coding is a special case of subband coding with:

* Number of bands = order of transform N

» Subsampling factor K= N

* Length of impulse responses of analysis/synthesis filters * N
= Filters used in subband coders are not in general orthogonal.

Page 28

28



Subband Coding vs. Transform Coding (Cont.)

Original image

8-channel
subband
Decomposition
(using DCT filters)

re-order(

8X8 DCT

Frequency Response of a DCT of Order N = 8
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Model-based Coding

 Has potential to achieve very low bitrates by using
source models at both the encoder and decoder

- Object oriented coding

- Wired frame model

Parameters of Object Based Coding

2o PN

Motion . S
* Texture *
@ Information ®
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Wire-Frame Model
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