III.3 Scalable Video Coding

Prof. Chia-Wen Lin Department of CS National Chung Cheng University 886-5-272-0411 ext. 33120 cwlin@cs.ccu.edu.tw

Outline

- Introduction
- Pyramidal coding
- · Scalability in the standard codecs
- Layered coding with wavelets
- MPEG-4 FGS
- MPEG-21 SVC
- Summary

Introduction

- Layered video coding (scalable coding): a concept that enables video layers to interwork
- · The codec generates two bit-streams
 - Base layer: most vital video information
 - Enhancement layer: residual information to enhance the quality of the base layer image
- three general layered coding techniques:
 - Pyramidal coding
 - Scalability in the standard video codecs (MPEG-2, H.263+, MPEG-4)
 - Wavelet-based coding (MPEG-4 I-frame, JPEG 2000)

Pyramidal Coding

- Pyramid: a data structure that provides successively condensed information of an image
- Coding schemes based on the pyramid structure are called *pyramidal coding*
 - the apex picture: the top of the pyramid, which gives the minimum acceptable picture resolution
 - other levels reconstruct images of higher quality by including additional information
 - lower levels toward to the bottom of the pyramid are of less significant importance

Pyramidal Coding (Cont.)

- can be used to reconstruct images of varying quality, depending on the network resources
- Two methods of pyramidal image coding:
 - Laplacian pyramid (Burt and Adelson 1983)
 - DCT pyramid

Wavelet Decomposition vs. DCT Pyramid • The Laplacian coding increase the coding are - 1+1/4+1/16+1/64+...=4/3 • The DCT pyramid and the wavelet transform do not increase the coding area Image: Constraint of the pyramid and the wavelet transform do not increase the coding area Image: Constraint of the pyramid and the wavelet transform do not increase the coding area Image: Constraint of the pyramid and the wavelet transform do not increase the coding area Image: Constraint of the pyramid and the wavelet transform do not increase the coding area Image: Constraint of the pyramid and the wavelet transform do not increase the coding area Image: Constraint of the pyramid and the wavelet transform do not increase the coding area Image: Constraint of the pyramid and the wavelet transform do not increase the coding area Image: Constraint of the pyramid and pyramid and the pyramid and the pyramid and th

Subband Decomposition

- The DCT pyramid implicitly embodies subband decomposition
- The effective bandwidth of these bands decreases from level to level
- Quantization and coding of each band of the pyramid can be adapted to reflect the sensitivity of the HVS
 - Coarser quantization for the higher frequency bands
 - Finer quantization for the lower frequency bands

PSNR Performance of DCT Pyramidal Coding: Parrot

Layers received	Bit /picture [kbits]	Bit/pixel	Discard rate [%]	Quality [dB]
Apex = 5	8.1	0.02	92	21.75
4+5	28.4	0.07	72	26.48
3+4+5	56.8	0.14	44	31.06
2+3+4+5	77	0.19	24	34.78
All	101.4	0.25	0	39.2

Scalability in Standard Codecs

- The basic scalability tools offered are:
 - Data partitioning
 - SNR scalability
 - Spatial scalabilityTemporal scalability
 - Hybrid scalability

Data Partitioning

- not a true scalable coding
- a means of dividing the bitstream of a single-layer nonscalable DCT-based codec into two parts(layers):
 - The first layer
 - comprises the critical parts of the bitstream (e.g., headers, motion vectors, lower_order DCT coefficients)
 - The second layer
- is made of less critical data (e.g., higher DCT coefficients)
 bata from the second layer cannot be used unless the decoded base layer data are available

Comments on Spatial Scalable Encoder

- Comparing to data-partitioning and SNR scalable coders
 - Base-layer picture is almost free from blockiness
 - Some of very high frequency information is still missing
 - Base-layer picture can be used alone without picture drift
 - Higher price and more complexity

Applications of Spatial Scalability

- Spatial scalability (most complex):
 - Interworking between two different standard video codecs or heterogeneous data networks
 - Simulcasting of drift-free, good-quality video at two spatial resolutions, such as standard TV and HDTV
 - Distribution of video over computer networks
 - Video browsing
 - Reception of good quality low spatial resolution pictures over mobile networks
 - Similar to other scalable coders, transmission of error resilient video over packet networks.

Applications of Temporal Scalability

- Temporal scalability (moderately complex):
 Migration to progressive HDTV from the current interlaced broadcast TV.
 - Internetworking between lower bit rate mobile and higher bit rate fixed networks.
 - Video over LANs, Internet and ATM for computer work stations.
 - Video over packet (Internet/ATM) networks for loss resilience.

Layered Coding with Wavelets

- One of the advantages of wavelet over DCTbased codecs is the absence of blocking artifacts
- With wavelet transforms, one can generate several layers having various spatial and quality resolutions
- The number of data layers can be much higher than what with the DCT-based codecs
- · Better delivery of images over networks

Wavelet-Based Still Image Coder

- The coding principle is based on the discrete wavelet transform, which is a subclass of subband coding
- The lowest subband is coded with a differential pulse code modulation (DPCM)
- · Higher bands with the zero-tree coding technique

Zero-tree Coding: Quadtree **Representation of Higher Bands**

- Subimages of lower bands have quarter dimensions of their higher bands
- A quad-tree representation of the bands of the same orientation for a 10-band splitting is shown below (three-stage wavelet transform)
- If a coefficient in LH₃ is zero, it's more likely that its children in higher bands of LH2 and LH1 will also be zero => "zero tree"

exhausted.

Embedded Zerotree Wavelet (EZW) Algorithm

- · Decoding: bitstream can be truncated to yield a coarser approximation: "embedded" representation
- Further details: J. M. Shapiro, "Embedded image coding using zerotrees of wavelet coefficients," IEEE Transactions on Signal Processing, vol. 41, no. 12, pp. 3445-3462, December 1993.

Summary

- > Layered coding is a means of facilitating unequal protection of image/video information at various important levels
- > Three general layered coding schemes are discussed
- Pyramidal coding:
 - only has a historical importance
 - · DCT pyramid has proven to be very efficient in image condensation
 - Layered coding based on standard DCT-Based codec only three methods of scalability have been recognized
 - (spatial, SNR, and temporal)
 - supported in H.263+ and MPEG-2
 - Wavelet transform
 - has been adopted in JPEG-2000 and MPEG-4
 - generates more layers than DCT-based codec => verv attractive in video networking

MPEG-4 Fine Granularity Scalability

Prof. Chia-Wen Lin Department of CS National Chung Cheng University 886-5-272-0411 ext. 33120 cwlin@cs.ccu.edu.tw

MPEG-4 Fine Granularity Scalability

- Internet applications
- broadcast applications over packet networks
 - Low complexity
 - Supports both unicast & multicasting capabilities
- Supports various layers of SNR enhancements
- Covers a "range" of bitrates instead of a few discrete bitrates
- Base-layer compatible to MPEG-4
- Error robustness

Challenges for Internet Video

- Challenges
 - No QOS guarantees (bandwidth, delay, packet loss)
 - Bandwidth differences of heterogeneous networks
 - Bandwidth variation with time
- Conventional video coding techniques
 Optimizing perceived quality at a given bitrate

Bandwidth Variation

- "Broadband" Internet access has wider variation:
 - Cable modem: from < 100 to > 1000 Kbit/sec
- DSL:
- from < 600 to > 6000 Kbit/sec

Bandwidth Variation - Solutions

- Multiple Bit-streams pre-encoded with different bit-rates
 - Large storage
 - Complexity in bit-streams management and switching
- Real-time Transcoder
 - High complexity in the streaming sever
- Scalable video
 Degree of scalability

FGS Bit-plane Coding Example

The absolute residue values after zigzag ordering are given as follows:

10,0,6,0,3,0,...,0,0 (10)₁₀=(1010)₂

Other Proposals for Improving FGS

- Progressive FGS (PFGS)
 Proposed by Microsoft Research Asia
- Adaptive Motion-Compensated FGS (AMC-FGS)
 Proposed by Philips Research
- Reliable FGS (RFGS)
 - Proposed by NCTU
 - Uses leaky prediction

FGS Multicasting

- MPEG-4 FGS method
 - consists of layered video coding that supports SNR, temporal, and hybrid temporal-SNR scalabilities
 - simplicity and flexibility in supporting multicast streaming applications
 - Base layer and one or more enhancement layer send into different multicasting group individually
- Problems in multimedia transmission
- Network heterogeneous
 - Different codec, resource, network conditions, user requirements, etc.
 - Feedback implosion

Current FGS Multicasting Approaches

- Receiver-driven multicast
 - Multicasting the base-layer over one MC group
 - Multicasting the enhancement-layer over one or more MC groups
 - Total flexibility in creating "customized MC channels"
- Sender Adaptive & Receiver-driven multicast
 - Better layer arrangement and resource allocation

Summary

- MPEG-4 FGS solves the bandwidth-variation problem over the Internet
 - A single enhancement-layer stream
- Totally flexible, efficient, and simple solution
 For both unicast and multicast
- Packet loss resilient
- Open standard

MPEG-21 Scalable Video Coding

Prof. Chia-Wen Lin Department of CS National Chung Cheng University 886-5-272-0411 ext. 33120 cwlin@cs.ccu.edu.tw