IV.2 Video Transcoding Prof. Chia-Wen Lin (林嘉文) Department of CSIE National Chung University 886-5-272-0411 ext. 33120 http://www.cs.ccu.edu.tw/~cwlin/

cwlin@cs.ccu.edu.tw

Presentation Outline

- Background
- Overview of Video Transcoding
 - Application Examples
 - Pixel-Domain Transcoder
 - DCT-Domain Transcoder
 - Fast Video Transcoding Architectures
- CCL's Strength in Video Transcoding
- Discussions

DCT-Domain Motion Compensation (3)
 All unitary orthogonal transforms such as DCT are distributive to matrix multiplication, I.e., DCT(AB)=DCT(A)DCT(B) The elements of B₄₁ can be computed directly from the elements of B₄ through geometric transforms B₄₁ = H_{in}B₄H_{w_i} The DCT coefficients of block B can be computed using B = \sum_{i=1}^{4} H_{in_i}B_iH_{w_i}
and can be pre-computed and stored in memory.

	Neighboring blocks	Position	\mathbf{h}_{h_i}	\mathbf{h}_{w_i}
	b 1	Lower right	$\begin{bmatrix} 0 & I_{8^{-h}} \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ I_{8-w} & 0 \end{bmatrix}$
b ₂		Lower left	$\begin{bmatrix} 0 & I_{8^{-h}} \\ 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & I_w \\ 0 & 0 \end{bmatrix}$
	b 3	Upper right	$\begin{bmatrix} 0 & 0 \\ I_k & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 \\ I_{8-w} & 0 \end{bmatrix}$
	b ₄	Upper left	$\begin{bmatrix} 0 & 0 \\ I_k & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & I_w \\ 0 & 0 \end{bmatrix}$

Problems of Existing Fast Transcoders

- "Drift" due to: No clipping functions considered Motion compensation is not a linear operation when
- needs interpolations
- Assuming infinite accuracy in DCT/IDCT

Can not handle:

- · Frame-rate conversion
- Frame-skipping
- Spatial resolution conversion
- Mode changes
 Different motion vectors

Research Examples

- Adaptive Motion Vector Refinement for High-Performance Video Transcoding
- Dynamic Region-of-Interest Transcoding for Multipoint Video Conferencing
- Error Resilience Transcoding for Video Streaming over WLAN
- Key-frame Extraction/Transcoding for Channel-Aware Video Streaming

Motion Vector Refinement for High-Performance Transcoding

IEEE Trans. Multimedia 1999

Prof. Chia-Wen Lin Department of CS National Chung Cheng University 886-5-272-0411 ext. 33120 cwlin@cs.ccu.edu.tw

Motion Vector Refinement

- · Reduce the computation while keeping the high performance
- · Using base and delta motion vector

 New search area ca search area (e.g. vs.

 $\begin{array}{ll} \mbox{can be much smaller than the original} \\ \mbox{vs.} & \mbox{pixels}) \end{array}$

Adaptive Motion Vector Refinement (1)

Sum of Differential Quantization Error (SDQE)

where $\,q_1$ = quan. step-size extracted from incoming current frame $\,q_2$ = quan. step-size used in the previous frame in the transcoder

Fast Search Algorithms							
Horizontal And Vertical Search (HAV)							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Best case (5 checking points) Worst case (7 checking points)							

Performance Comparison (2)							
(Carphone Sequence, 128 kbps to 32 kbps)							

Motivation

- Observation
 - In a multipoint video conference, in general, only one or two conferees are active at one time.
- Considerations in this work:
 - Video quality enhancement Sub-windows of high activity requires higher frame rate to maintain acceptable temporal resolution (motion smoothness), while the frame rate for the inactive sun-windows can be lower.
 - The bit-rate saved from skipping the inactive sub-windows can be used to enhance the quality of the active ones.
 - Computation reduction
- Significant computation reduction can be achieved by sub-window skipping.
- · Question: What frames should or should not be skipped?

Dynamic Sub-Window Skipping • Sub-window skipping criteria $if (S_m^{MV} < TH_{MV1}) \& \& (\frac{SAD_m - SAD_m^{prev}}{SAD_m^{prev}} < TH_{SAD1})$ then Skip Current Sub-window else Encode Current Sub-window $S_m^{MV} = \sum_{i=1}^{N} |MV_{m,n}^x| + |MV_{m,n}^y|$ $SAD_{m,n} = \sum_{n=1}^{N} \sum_{x,y \in MB_{m,n}} |f_m(x, y) - f_m^{\text{prev}}(x + MV_{m,n}^x, y + MV_{n,n}^y)|$ The static sub-windows are skipped (distortion is relatively invisible) • and the saved bits are used to enhance other sub-windows Computation complexity: The MV's are decoded from the incoming bitstreams, thus only the summation operation is required.

- The SAD computation cost is low
- The SAD computation cost is low
 Sub-window skipping can achieve significant computation saving

		Average PSNR of all		Average PSNR of		R of	
	Skipped	f	frames (dB) DSWS		non-skipped frames (dB		nes (dB)
	frame No.	Original			Original	DSWS	
Sub-sequence 1	151	28.54	29.14	+0.60	28.55	29.31	+0.76
Sub- sequence 2	75	28.59	29.16	+0.57	28.52	29.25	+0.73
Sub- sequence 3	54	29.54	29.56	+0.02	29.48	29.59	+0.11
Sub- sequence 4	139	28.99	28.59	-0.40	28.73	28.68	-0.05
Average	104.75	28.91	29.11	+0.20	28.82	29.21	+0.39
Skipp	ed frame r	number (t	otal :400	frames) (TH1=5;	and ave TH ₂ =0.1)	rage	1

Video Adaptation for Three-Tier Video streaming

- WLANs are packet erasure channels
 - Burst errors due to slow-fading channels
 - Bit-level error-resilient coding tools and Bit/byte-level FEC are usually not useful
- MAC-layer retransmission may degrade the quality seriously
- Transcoding is particularly useful for content adaptation in such application scenario
- The number of home clients are usually small => reasonable complexity
- The home server can easily capture the channel statistics through feedback information
- Allow two-pass processing

Two-Pass Error-Resilience Transcoding

- First pass Encoding process
 - exploits the motion vectors and concealment distortion to evaluate the rank of the loss impact of each MB in a frame, each frame in a GOP
 - the rank serves as side information or transcoding hints to guide the second-pass (transcoding pass) intra-refresh decisions

Two-Pass Error-Resilience Transcoding

- Second-pass Transcoding process
 - collect channel statistics from the client terminals to estimate the channel packet loss-rate
 - use side information and feedback channel condition to determine the intra-refresh rate
 - perform intra-refresh on the highest-priority MBs (with top-ranked loss impact)

Loss-Impact Estimation in First-Pass Encoding

- · Involves three steps
 - Calculating the Pixel-level Loss Impact
 - Calculating the MB-level Error-Propagation
 - Calculating the Frame-level Error Propagation

Transcoding with Adaptive Intra-Refresh: GOP-Level Allocation

• The number of intra-refreshed MBs in a GOP

$$N_{\text{intra}}^{\text{GOP}} = \frac{\frac{1}{N_{\text{GOP}}} \sum_{n=1}^{N_{\text{GOP}}} EP_n \times PLR}{TH_{\text{intra}}}$$

- NGOP: number of frames in a GOP
- PLR: packet-loss rate
- $TH_{\rm intra}$: scaling parameter to characterize the relationship between $N_{\rm intra}^{\rm GOP}$ and the error propagation effect in a GOP

Demo: Salesman (<i>PLR</i> = 10% & 20%)						
Original	Proposed 10%	Non-E.R. 10%	Random 10%	Regular 10%		
	Proposed 20%	Non-E.R. 20%	Random 20%	Regular 20%		

Summary

- We proposed a novel two-pass prioritized intrarefresh strategy for error-resilience transcoding
- The extra computational complexity required for the transcoding process is almost negligible, thereby making it suitable for real-time applications
- The proposed algorithm can effectively mitigate the error propagation due to packet-loss
- The degree of error resilience can be dynamically adjusted to adapt to a channel with time-varying error characteristics

Channel Rate Adaptation

- The features and the estimated channel conditions are used to determine the output bit-rate and the key-frame selection policy.
- After determining the output bit-rate, the target number of keyframes, *N*KF with rate constraint *R*out is obtained as

$$N_{\rm KF} = \left\lfloor k_{\rm adj} \, \frac{N_{\rm total} R_{\rm out}}{R_{\rm in}} \right\rfloor$$

 $R_{\rm in}$: bit-rate of the incoming video

 R_{out} : estimated bit-rate of the output video summary N_{total} : length of the video clip

Key-Frame Extraction for Rate Adaptation

- R-D Optimized Shot-Level Key-Frame Allocation
 - The problem of key-frame allocation is to distribute NKF key-frames into all shots.
 - Since different shots may have different characteristics (e.g., motion and texture), simply uniformly distributing the key-frames will result in nonuniform representation quality.
 - We propose an R-D optimized shot-level key-frame allocation scheme.

 Given two finite point sets A = {a1,...,ap} and B = {b1,...,bq}, the Hausdorff distance is H(A,B) = max(h(A,B),h(B,A))

where $h(A, B) = \max \min \|a - b\|$

• Because the Hausdorff distance is sensitive to noise, a modified Hausdorff distance metric is proposed

$$h_{K}(A,B) = K_{a \in A}^{\text{th}} \min_{b \in B} ||a-b||$$

$$d^{\mathrm{T}}(f_{i},f_{j}) = \sum_{n=i+1}^{j} \sum_{m=1}^{N_{\mathrm{MB}}} \left| MVX_{m}^{n} \right| + \left| MVY_{m}^{n} \right|$$

- Spatiotemporal distance

$$d(f_i, f_j) = k_{\rm T} d^{\rm T}(f_i, f_j) + k_{\rm S} d^{\rm S}(f_i, f_j)$$

Summary

- We proposed an adaptive sequential key-frame selection method for channel-aware video streaming applications
- R-D models are developed to characterize the key-frame representations of video contents
 - Based on offline extracted metadata
 - Non-iterative R-D constrained key-frame allocation & selection
 - Achieve lowest representation distortion
- The key-frames selection can be dynamically adjusted to adapt to a channel with time-varying characteristics