II.1 End-to-End QoS for Video Delivery

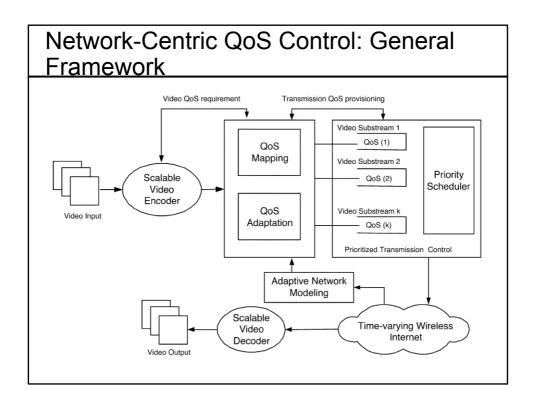
Prof. Chia-Wen Lin Department of CS National Chung Cheng University 886-5-272-0411 ext. 33120 cwlin@cs.ccu.edu.tw

Outline

- Introduction
- Network-Centric QoS Support
- End-to-End QoS Control for Video streaming
 - Congestion control
 - Error control
 - Video multicasting
- Video Steaming Properties for Network Use
- Conclusions

QoS Problems in Current Internet Infrastructure

- No QoS Guaranteed for current Network
 - No bandwidth reservation;
 - No delay guarantee;
 - No packet loss guarantee
- Heterogeneity: (multicast)
 - network: different users, different packet loss / delay
 - receiver: different latencies / visual quality requirements / processing powers / display formats


Technical Challenges for QoS Support

- To support end-to-end QoS for video delivery over wireless Internet, there are several fundamental challenges:
 - QoS support encompasses a wide range of technological aspects
 - Different applications have very diverse QoS requirements in terms of data rates, delay bounds, and packet-loss rates
 - Different types of networks inherently have different characteristics (network heterogeneity)
 - Dramatic heterogeneity among end users

QoS Control for Internet Video streaming

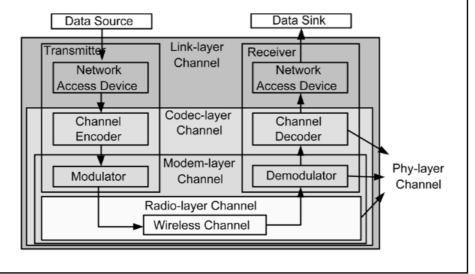
- Network Centric
 - --- next generation network providing QoS support
 - Link layer: the probability of buffer overflow or delay violation
 - Application layer: MSE, PSNR
- End System-based
 - --- compatible with current network structure
 - Congestion control
 - Error control
 - Power control

Components for End-to-End QoS Support

Network QoS Provisioning

- IETF QoS Provisioning Approaches
 - IntServ: per-flow-based
 - Impractical for lack of scalability and difficulty in resource reservation
 - DiffServ: per-aggregate-based
 - Provides a scalable and manageable network with service differentiation capability
- Service Differentiation
 - QoS delay & packet loss
- QoS Control Mechanisms
 - Packet scheduling, queue management algorithms, etc.
- Theories
 - Network calculus, effective bandwidth, etc.

Network QoS Provisioning for Wireless Networks


- 3GPP has defined four different UMTS QoS classes according to delay sensitivity
 - Conversational, streaming, interactive, and background classes
- IEEE 802.11e enhanced communication modes for providing QoS support
 - Distributed Coordination Function (DCF)
 - → Enhanced Distribution Coordination Function (EDCF)
 - Point Coordination Function (PCF)
 - → Hybrid Coordination Function (HCF)
- Wireless Multimedia Enhancements (WME) has also proposed to provide an interim QoS solution for 802.11

Cross-Layer QoS Support for Video Delivery over Wireless Internet

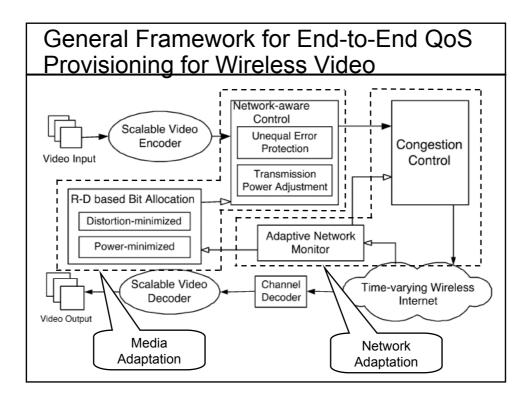
- 1. Wireless Network Modeling
 - Physical layer
 - Radio-layer channel: large-scale loss and small-scale fading
 - Modem-layer channel: modeled by a finite-state Markov chain whose states being characterized by different BERs
 - Codec-layer channel: modeled by a finite-state Markov chain whose states being characterized by different data-rates, or a symbol being error-free/in-error, or a channel being good/bad
 - Link layer
 - Effective Capacity (EC) model: capture the effect of channel fading for the link queuing behavior

Cross-Layer QoS Support for Video Delivery over Wireless Internet

Different Channel Models

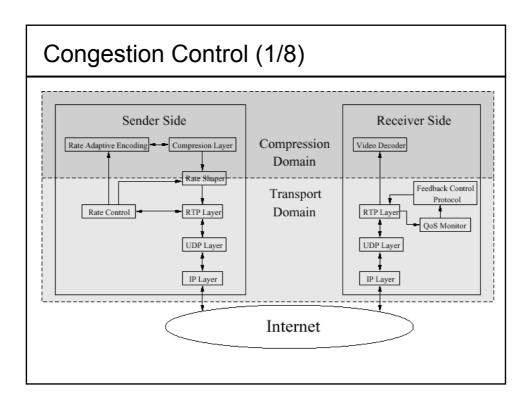
Cross-Layer QoS Support for Video Delivery over Wireless Internet

2. Prioritized Transmission Control


- Requires a class-based buffering and scheduling mechanism
 - Each QoS priority class can obtain a certain level of statistical QoS guarantees in terms of probability of packet loss and packet delay
 - Translate the statistical QoS guarantees of multiple priority classes into rate constraints based on the effective capacity
 - The rate constraints can be derived according to the guaranteed packet loss probabilities and different buffer sizes of each priority class

Cross-Layer QoS Support for Video Delivery over Wireless Internet

- 3. QoS Mapping and QoS Adaptation
 - Application-specific
 - The common approach is to partition multimedia data into smaller units and then map these units to different classes for prioritized transmission.
 - The partitioned multimedia units are prioritized based on its contribution to the expected quality at the end user.


Adaptation for End-System Centric QoS Control

- · Network adaptation
 - Design an adaptive media transport protocol to determine the network resources (e.g., bandwidth and battery power) for video delivery
- Media adaptation
 - control the bit rate of the video stream based on the estimated available bandwidth
 - adjust error and power control behaviors according to the varying wireless Internet conditions

QoS Control for Internet Video streaming

- Network Adaptive Congestion Control
 - To reduce packet loss and delay
 - Rate control, rate adaptive encoding and rate shaping
- Adaptive Error Control
 - To handle video quality when packet loss happens
 - FEC, retransmission, error resilience and error concealment

Congestion Control (2/8)

- Rate control:
 - UDP replaces TCP for delay reason
 - no congestion control for QoS in UDP
 - rate-based control is usually employed
 (source based, receiver based and hybrid)

Congestion Control (3/8)

- Rate control rate-based control
 - source based: sender regulates video stream applied to unicast & multicast
 - receiver based: each receiver regulates the receiving rate; typically for multicast
 - hybrid

Congestion Control (4/8)

- TCP-friendly flow control source-based
 - Probe-based
 - AIMD (Additive Increase Multiplicative Decrease)
 - MIMD (Multiplicative Increase Multiplicative Decrease)
 - Model-based

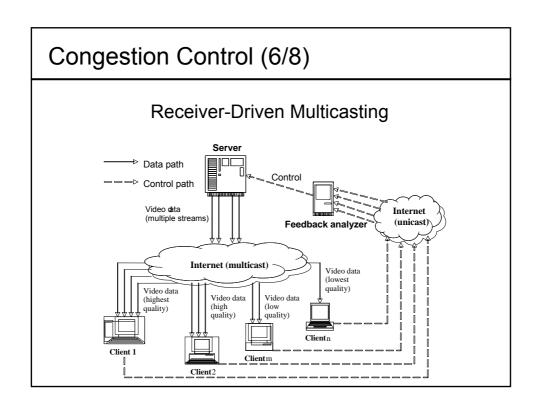

$$\lambda = \frac{1.22 \times MTU}{RTT \times \sqrt{p}}$$

Fig. 5. Source rate behavior under the AIMD rate control.

Congestion Control (5/8)

- Rate control receiver-based
 - for solving the heterogeneity in multicast
 - probe-based approach
 - model-based approach
 - joint-leaving for large number of receiver
 - -- congestion
 - shared learning or synchronization control

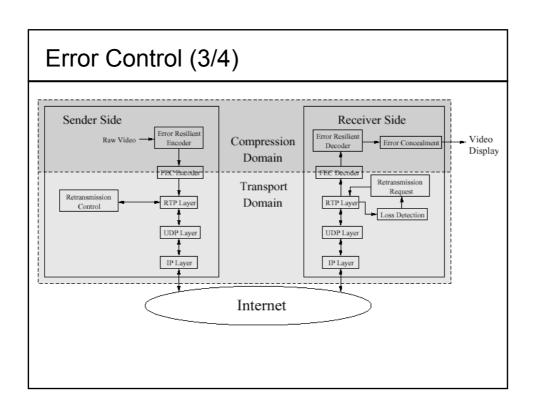
Congestion Control (7/8)

- Rate-adaptive Video Encoding to maximize the perceptual quality under a given rate.
- Scalable Rate Control in MPEG-4
 - second-order R-D model for target bit allocation
 - sliding-window to smooth the scene change effect
 - adaptive data points selection for model updating
 - adaptive threshold shape control
 - dynamically bit-rate allocation among VOs

Congestion Control (8/8)

- Rate Shaping
 - adapt the video rate to target network rate constraint
 - Server selective frame discard
 - Selective DCT coefficient discard

Congestion Control (8/8)

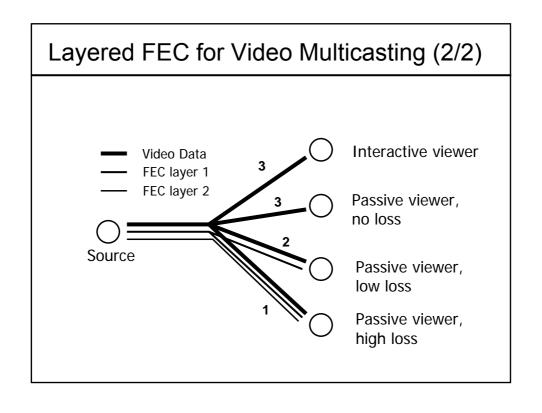

- End-to-end packet loss differentiation and estimation
 - Split connection method: places an agent at the edge of wired and wireless networks
 - End-to-end method: uses inter-arrival time or packet pair
- · Available bandwidth estimation
 - RTT, packet loss ratio
 - Receiver Based Packet Pair (RBPP)

Error Control (1/4)

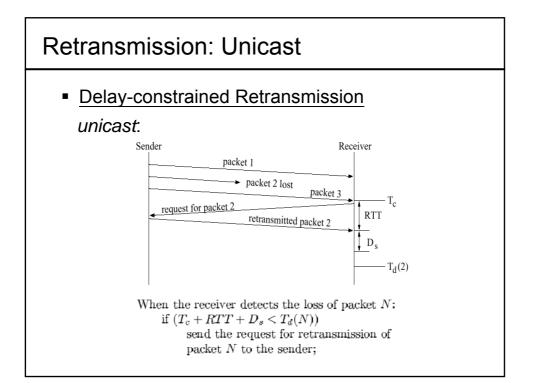
- To prevent packet loss by matching the rate of video streams to the available bandwidth in the network.
- packet loss is unavoidable
- other mechanisms to maximize the video presentation quality

Error Control (2/4)

- FEC
- Retransmission
- Error resilience coding
- Error concealment

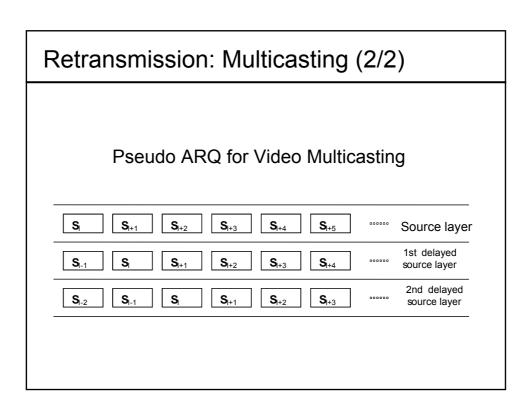

Error Control (4/4)

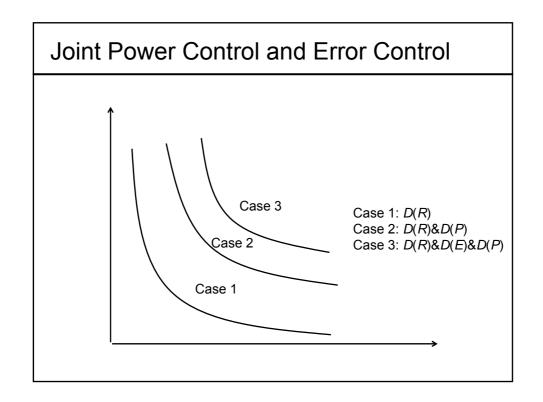

- <u>FEC</u> channel coding
- Unequal Error Protection and Equal Error Protection
 - increase transmission rate
 - increase delay: long block or interleaving
 - Not adaptive to varying loss characteristic


QoS for Video Multicasting

- FEC (Forward Error Correction)
 - Not suitable for bursty error network condition
- ARQ (Automatic Repeat reQuest)
 - May cause feedback implosion
- Pseudo-ARQ
 - Solves feedback implosion
 - To the server, it looks like ordinary multicast
 - To the receiver, it looks like ordinary ARQ

Layered FEC for Video Multicasting (1/2) More source layer, higher video quality More FEC layer, higher protection level FEC Layer 2 FEC 0-2 FEC 1-2 FEC Layer 1 FEC 0-1 FEC 1-1 FEC 2-1 Video Layer 3 GOP 0-3 **GOP 1-3 GOP 2-3** GOP 3-3 Video Layer 2 GOP 0-2 **GOP 1-2 GOP 2-2 GOP 3-2** Video Layer 1 GOP 0-1 **GOP 1-1 GOP 2-1 GOP 3-1** Time = 0Time = Δ Time = 2Δ Time = 3Δ from "Multicast Transmission of Scalable Video using Receiver-driven Hierarchical FEC"




Retransmission: Multicasting (1/2)

- Delay-constrained Retransmission multicast
- Restricted within closely located multicast members -- local recovery;
- Feedback implosion;
- Receiver buffer to absorb delay jitter and to receive re-transmitted packet.

Joint Power Control and Error Control

- Multipath fading and multiple access interference (MAI) in wireless networks necessitate the use of high transmission power
- More sophisticated coding scheme and powerful channel coding can be applied to decrease transmission power while maintaining a desired video quality
- Three cases in joint power control and error control for video communication
 - Case 1: D = D(R)
 - Case 2: D = D(R) & D(P)
 - Case 3: D = D(R) & D(E) & D(P)

Rate-Distortion-Based Bit-Allocation

 The resource allocation problem can be formulated as follows:

$$Min \quad D_T(D_s, D_c) \quad \text{s.t.} \quad R_T \le R_0$$

 D_T : the expected end-to-end distortion

 D_s : the source distortion

 D_c : the channel distortion

 R_T : the total bandwidth

 R_0 : the total bandwidth budget

Min
$$P_T(P_s, P_c, P_t)$$
 s.t. $R_T \le R_0$ and $D_T \le D_0$

Video Compression for Internet Video Streaming

- Scalable and non-scalable coding
- Requirements upon streaming video codec:
 - Bandwidth
 - Delay
 - Loss
 - VCR like functionality
 - Decoding complexity

Video Steaming Properties for Network Use

- Natural breakpoints for packetization
- Adjustable packet sizes
- No bit level shifts during packetization
- Well defined high-priority information
- Flexible rate control
- Ease of transcoding
- Layered coding
- Resilience to error propagation