Chapter 10 RC Circuits

Objectives

- Describe the relationship between current and voltage in an RC circuit
- Determine impedance and phase angle in a series RC circuit
- Analyze a series RC circuit
- Determine the impedance and phase angle in a parallel RC circuit

Objectives

- Analyze a parallel RC circuit
- Analyze series-parallel RC circuits
- Determine power in RC circuits

Sinusoidal Response of RC Circuits

- When a circuit is purely resistive, the phase angle between applied voltage and total current is zero
- When a circuit is purely capacitive, the phase angle between applied voltage and total current is 90°
- When there is a combination of both resistance and capacitance in a circuit, the phase angle between the applied voltage and total current is somewhere between 0° and 90°, depending on relative values of resistance and capacitance

Impedance and Phase Angle of Series RC Circuits

- In the series RC circuit, the total impedance is the phasor sum of R and $j \mathrm{X}_{\mathrm{C}}$
- Impedance magnitude: $Z=\sqrt{ } \mathrm{R}^{2}+\mathrm{X}^{2}{ }_{C}$
- Phase angle: $\theta=\tan ^{-1}\left(\mathrm{X}_{C} / \mathrm{R}\right)$

(a)

(b)

(c)

Analysis of Series RC Circuits

- The application of Ohm's law to series RC circuits involves the use of the quantities Z , V , and I as:

$$
\begin{gathered}
\mathbf{V}=\mathbf{I Z} \\
\mathbf{I}=\mathbf{V} / \mathbf{Z} \\
\mathbf{Z}=\mathbf{V} / \mathbf{I}
\end{gathered}
$$

Relationships of I and V in a Series RC Circuit

- In a series circuit, the current is the same through both the resistor and the capacitor
- The resistor voltage is in phase with the current, and the capacitor voltage lags the current by 90°

KVL in a Series RC Circuit

- From KVL, the sum of the voltage drops must equal the applied voltage $\left(\mathrm{V}_{\mathrm{S}}\right)$
- Since V_{R} and V_{C} are 90° out of phase with each other, they must be added as phasor quantities
- Magnitude of source voltage:

$$
V_{S}=\sqrt{V_{R}^{2}+V_{C}^{2}}
$$

- Phase angle between resistor and source voltages:

$$
\theta=\tan ^{-1}\left(\mathrm{~V}_{\mathrm{C}} / \mathrm{V}_{\mathrm{R}}\right)
$$

Variation of Impedance and Phase Angle with Frequency

- For a series RC
circuit; as frequency
increases:
- X_{C} decreases
- Z decreases
- θ decreases
- R remains constant

Impedance and Phase Angle of Parallel RC Circuits

- Total impedance :

$$
\mathrm{Z}=\left(\mathrm{RX}_{\mathrm{C}}\right) /\left(\sqrt{\mathrm{R}^{2}+\mathrm{X}^{2}{ }_{\mathrm{C}}}\right)
$$

- Phase angle:

$$
\theta=\tan ^{-1}\left(\mathrm{R} / \mathrm{X}_{\mathrm{C}}\right)
$$

Conductance, Susceptance and Admittance

- Conductance is the reciprocal of resistance:

$$
G=1 / R
$$

- Capacitive susceptance is the reciprocal of capacitive reactance:

$$
B_{C}=1 / X_{C}
$$

- Admittance is the reciprocal of impedance:

$$
Y=1 / Z
$$

Ohm's Law

- Application of Ohm's Law to parallel RC circuits using impedance can be rewritten for admittance ($\mathrm{Y}=1 / \mathrm{Z}$):

$$
\begin{aligned}
\mathbf{V} & =\mathbf{I} / \mathbf{Y} \\
\mathbf{I} & =\mathbf{V} \mathbf{Y} \\
\mathbf{Y} & =\mathbf{I} / \mathbf{V}
\end{aligned}
$$

Relationships of the Currents and Voltages in a Parallel RC Circuit

- The applied voltage, V_{S}, appears across both the resistive and the capacitive branches
- Total current $\mathrm{I}_{\text {tot }}$, divides at the junction into the two branch current, I_{R} and I_{C}

(b)

Kirchhoff's Current Law

- Current through the resistor is in phase with the voltage
- Current through the capacitor leads the voltage, and thus the resistive current by 90°
- Total current is the phasor sum of the two branch currents
- Magnitude of total current is:

$$
\mathrm{I}_{\mathrm{tot}}=\sqrt{\mathrm{I}^{2}{ }_{\mathrm{R}}+\mathrm{I}^{2}{ }_{\mathrm{C}}}
$$

- Phase angle: $\theta=\tan ^{-1}\left(\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{R}}\right)$

Conversion from Parallel to
 Series Form

- For every parallel RC circuit there is an equivalent series RC circuit for any given frequency
- Equivalent resistance and capacitive reactance are indicated on the impedance triangle

Series-Parallel RC Circuits

- An approach to analyzing circuits with combinations of both series and parallel R and C elements is to:
- Calculate the magnitudes of capacitive reactances (X_{C})
- Find the impedance of the series portion and the impedance of the parallel portion and combine them to get the total impedance

Power in RC Circuits

- When there is both resistance and capacitance, some of the energy is alternately stored and returned by the capacitance and some is dissipated by the resistance
- The amount of energy converted to heat is determined by the relative values of the resistance and the capacitive reactance

Power Triangle for RC Circuits

- The Power can be written as:

$$
\mathrm{P}_{\text {true }}=\mathrm{V}_{\mathrm{s}} \mathrm{I}_{\text {total }} \cos \theta
$$

where: $\theta=0^{\circ}$ for a purely resistive circuit

$$
\text { since } \cos \left(0^{\circ}\right)=1, \mathrm{P}_{\text {true }}=\mathrm{V}_{\mathrm{s}} \mathrm{I}_{\text {total }}
$$

$\theta=90^{\circ}$ for a purely capacitive circuit since $\cos \left(90^{\circ}\right)=0, \mathrm{P}_{\text {true }}=$ zero

Power Factor

- The term $\cos \theta$, in the previous slide, is called the power factor:

$$
\mathrm{PF}=\cos \theta
$$

- The power factor can vary from 0 for a purely reactive circuit to 1 for a purely resistive circuit
- In an RC circuit, the power factor is referred to as a leading power factor because the current leads the voltage

Significance of Apparent Power

- Apparent power is the power that appears to be transferred between the source and the load
- Apparent power consists of two components; a true power component, that does the work, and a reactive power component, that is simply power shuttled back and forth between source and load
- Apparent power is expressed in volt-amperes (VA)

RC Lag Network

- The RC lag network is a phase shift circuit in which the output voltage lags the input voltage

$$
V_{\text {out }}=\left(\frac{X_{C}}{\sqrt{R^{2}+X_{C}^{2}}}\right) V_{\text {in }}
$$

(a) A basic $R C$ lag network

RC Lead Network

- The RC lead network is a phase shift circuit in which the output voltage leads the input voltage

Frequency Selectivity of RC Circuits

- Frequency-selective circuits permit signals of certain frequencies to pass from the input to the output, while blocking all others
- A low-pass circuit is realized by taking the output across the capacitor, just as in a lag network
- A high-pass circuit is implemented by taking the output across the resistor, as in a lead network

Frequency Selectivity of RC Circuits

- The frequency at which the capacitive reactance equals the resistance in a lowpass or high-pass RC circuit is called the cutoff frequency:

$$
f_{\mathrm{c}}=1 /(2 \pi \mathrm{RC})
$$

Summary

- When a sinusoidal voltage is applied to an RC circuit, the current and all the voltage drops are also sine waves
- Total current in an RC circuit always leads the source voltage
- The resistor voltage is always in phase with the current
- The capacitor voltage always lags the current by 90°

Summary

- In an RC circuit, the impedance is determined by both the resistance and the capacitive reactance combined
- Impedance is expressed in units of ohms
- The circuit phase angle is the angle between the total current and the source voltage
- The impedance of a series RC circuit varies inversely with frequency

Summary

- The phase angle (θ) of a series RC circuit varies inversely with frequency
- For each parallel RC circuit, there is an equivalent series circuit for any given frequency
- The impedance of a circuit can be determined by measuring the applied voltage and the total current and then applying Ohm's law

Summary

- In an RC circuit, part of the power is resistive and part is reactive
- The phasor combination of resistive power and reactive power is called apparent power
- Apparent power is expressed in volt-amperes (VA)
- The power factor indicates how much of the apparent power is true power

Summary

- A power factor of 1 indicates a purely resistive circuit, and a power factor of 0 indicates a purely reactive circuit
- In a lag network, the output voltage lags the input voltage in phase
- In a lead network, the output voltage leads the input voltage
- A filter passes certain frequencies and rejects others

