Chapter 2
 Voltage, Current, and Resistance

Objectives

- Describe the basic structure of an atom
- Explain the concept of electrical charge
- Define voltage and discuss its characteristics
- Define current and discuss its characteristics
- Define resistance and discuss its characteristics
- Describe a basic electric circuit
- Make basic circuit measurements

Atomic Structure

- An atom is the smallest particle of an element that retains the characteristics of that element
- An atom has a nucleus, consisting of positively charged particles called protons, and uncharged particles called neutrons
- The basic particles of negative charge, called electrons, orbit the nucleus

Electron shells and Orbits

- Electrons orbit the nucleus at discrete distances from the nucleus
- Orbits are grouped onto energy bands known as shells
- A given atom has a fixed number of shells
- Each shell has a fixed maximum number of electrons permissible at energy levels (orbits)

Valence Electrons

- Electrons with the highest energy exist in the outermost shell, known as the valence shell, and electrons in this shell are called valence electrons
- Valence electrons possess more energy and are relatively loosely bound to the atom
- If a valence electron acquires enough external energy to leave the atom, the process is known as ionization
- The escaped electron is called a free electron

Categories of Materials

- Conductors readily permit current flow, due to a large number of free electrons in the material
- Conductors are characterized by 1, 2, or 3
valence electrons in their atomic structure
- Semiconductors have 4 valence electrons
- Insulators have few free electrons, and tend not to permit current to flow through them

Electrical Charge

- The charge of an electron and that of a proton are equal in magnitude but opposite in polarity
- The force acting between charges is called an electric field

charges attract

Coulomb

- Electrical charge (Q) is measured in coulombs (C)
- By definition:

One coulomb is the total charge possessed by 6.25×10^{18} electrons
$\mathrm{Q}=($ number of electrons)$) /\left(6.25 \times 10^{18}\right)$

Positive and Negative Charge

- A neutral atom has the same number of electrons and protons, hence no net charge
- If a valence electron acquires enough energy to move away from an atom, the atom is left with a net positive charge (positive ion)
- If an atom acquires an extra electron in its outer shell, it has a net negative charge (negative ion)

Formation of positive and negative ions

When dissolved in water, hydrogen chloride gas separates into positive hydrogen ion and negative chloride ions. The chloride atom retains the electron given up by the ydrogen atom, forming both positive and negative ions in the same solution.

Voltage

- The unit of voltage is the volt (V)
- By definition:

One volt is the potential difference (voltage)

 between two points when one joule of energy is used to move one coulomb of charge from one point to the other
Batteries

- A battery is a type of voltage source that converts chemical energy into electrical energy
- The way cells are connected, and the type of cells, determines the voltage and capacity of a battery

(a) Series-connected battery

(b) Parallel-connected battery

Other Voltage Sources

- Solar Cells convert light energy into electrical energy
- Generators convert mechanical energy into electrical energy
- Electronic power supplies do not produce electrical energy, but they convert the ac voltage from the wall outlet into a constant dc voltage for use in our circuits

Current

- The movement of free electrons from negative to positive is electrical current (I)
- By definition:
electrical current is the rate of flow of charge

$$
\mathbf{I}=\mathbf{Q} / \mathbf{t}
$$

Ampere: The Unit of Current

- One ampere is the amount of current that exists when a number of electrons having a total charge of one coulomb move through a given crosssectional area in one second

When a number of electrons having 1 coulomb of charge pass through this cross-sectional area in 1 second, there is
1 ampere of current.

Resistance

- The property of a material that restricts the flow of electrons is called resistance (R)
- By definition:

Resistance is the opposition to current

- Where there is current through any material that has resistance, heat is produced by the collisions of electrons and atoms

Ohm: The unit of Resistance

- By definition:

One ohm of resistance exists if there is one ampere of current in a material when one volt is applied across the material

The symbol of an ohm is omega (Ω)

Conductance

- Conductance (G) is the reciprocal of resistance:

$$
G=1 / R
$$

- The unit of conductance is siemens (S)

Resistors

- Resistors are used to limit current or divide voltage, and in some cases, generate heat
- Common resistors are carbon-composition, carbon film, metal film, and wirewound
- surface mount resistors are available as small resistor chips
- wirewound resistors are used where high power ratings are required

Color-code bands on a resistor

- $1^{\text {st }}$ band is the first digit of the resistance value
- $2^{\text {nd }}$ band is the second digit of the resistance value
- $3^{\text {rd }}$ band is the multiplier (number of zeros)
- $4^{\text {th }}$ band indicates the tolerance

Precision Resistors

- Precision resistor values are identified with 5 color bands, the first 3 bands indicate resistance value, the $4^{\text {th }}$ band is the multiplier, and the $5^{\text {th }}$ band indicates the tolerance
- Precision resistors will have a tolerance of $2 \%, 1 \%, 0.5 \%, 0.25 \%$ or 0.1%

Alphanumeric Labeling

- Two or three digits, and one of the letters \mathbf{R}, \mathbf{K}, or \mathbf{M} are used to identify a resistance value
- The letter is used to indicate the multiplier, and its position is used to indicate decimal point position

Variable Resistors

- Variable resistors are designed so that their resistance values can be changed with manual or automatic adjustment
- A potentiometer is a variable resistor used to divide voltage
- A rheostat is a variable resistor used to control current

The Basic Circuit

- An electric circuit consists of a voltage source, a load, and a path for current between the source and the load
- A closed circuit is one in which the current has a complete path
- An open circuit is one in which the current path is broken, or incomplete

Ground

- Ground is the reference point in electric circuits and has a potential of 0 V with respect to other points in the circuit
- All ground points in a circuit are electrically the same and are therefore common points

(a)

(b)

Basic Circuit Measurements

- A voltmeter measures voltage across (in parallel) a resistance or load
- An ammeter is inserted in the current path (in series) to measure current
- Resistance is measured across a resistor, out-of-circuit, with an ohmmeter
- Digital Multimeters (DMM's) measure voltage, current and resistance

Summary

- An atom is the smallest particle of an element that retains the characteristics of that element
- Free electrons make current possible
- Like charges repel, opposite charges attract
- One coulomb is the charge of 6.25×10^{18} electrons
- One volt is the potential difference between two points when one joule of energy is used to move one coulomb from one point to the other

Summary

- Voltage must be applied to a circuit to produce current
- One ampere is the amount of current that exists when one coulomb of charge moves through a given cross-sectional area in one second
- Resistance limits current
- One ohm is the resistance when there is one ampere of current in a material with one volt applied across the material

Summary

- An electric circuit consists of a source, a load, and a current path
- An open circuit has an incomplete current path
- A closed circuit has a complete current path
- An ammeter is connected in line with the current path
- A voltmeter is connected across the current path
- An ohmmeter is connected across a resistor (the resistor must be out-of-circuit)

