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PROBLEM 8.1:

4 - — - r“
y) N2 yIn-1] ~ y[n-2]) + L:].-— -
“At rest" condihon => yWl=6 for n<o.
ylel= 12 y[1] -y-21 +x[o)= (Z)o-o+1= 1
y01= Zyll-yli +x[)= (Z)t-oro=1Z
yiz]= 2 y0 - ylel + x[2]= EZNz -1 +o= |
yi3]=({Z)t-{z+o0 =0
yia]= (@)o- 1 +o = -1
’ﬂ'\ﬂ gev\exa\ Formula s
yinl= A (n)" + Az (R)" fr n=o
where v, 2 0, ore the poles.
1
&)= oots
e e (Bt
J—?-t-m__: %IJJ_;_.%

2

. o
yiw)= A, (e’%)n + Azenn

Now, we evaluate A, t Az from
known valves of yn]l. We vse n=2 and nN=4

. ET |
yiz1= 1 = A& s A€ = jA A
ylal=-1= A" + A€ = -A-A,

Solve the simultanesvs egquations: _
I-3=-2jA2  amd 1+j = 2R o5 A= D

dAltAl*‘ Al:' %é.w‘(‘*

- 1) W4

\Wa \%n W - TV
ywl= {z &’ it & M) for nzo

=J2 cos(gn—%) = Ecos(%—(n-—l))
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PROBLEM 8.6:

&)
T Y‘€-wvlaw~5¢3:

|1 HNM,XWJWR

f || I

1 ‘\
eI

Y ="z Y-l +xT)

)/[“'l + ';_y fn-l'] = X[n]

H(z) =

|+ 4 27

z ZErRo [ z=0

?;'_/a: PoLe @ z=

-l
2.

() Do this bj w\akfnﬂ a toble.

N AT yini
<0 o o
o | 1 ylol =% y-[:]_u[o] = 7
1 i Ve )’f"]f-'s, () +1= 14
2 [ 1 g | yRIssta =%
? ol -3/8 Yy31==%(3/4) +o o
4 ° 3/ ytad =gy +o =
S o %452 -
g o Ye4
7 © ~328
g & S/ = —_—
b 6 n<o Kespowse
j [h/l = I W=o BEWAVES WLKE
23 n= |

McClellan, Schafer and Yoder, Sgnal Processing First, ISBN 0-13-065562-7.
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PROBLEM 8.13:

Characlerize each systew (S, — 51)

L 42
S,'- H(2)= TZ_OZ;E"_' = pole at 2= 01
meTE 2emw at 2=-|

H.(C-""t’) isa LPF wth o nwll at Q=T

S,t H (2) = q+102” = le at Z2=-09
* 2 ) ]+ 0.9z zma* z=—194

Ha(e3®) is am all-pass Fillea

S > Hsz(@)= 'L(I-Z D) = pele at z=-0.9
|+ 092" 2¢io at 2= |

Ha(e3®) is a HPF with a null ot d=o.

Sat Hyl2)= L1442 1624423427
=x(1+2)Y = 4 zensat z--

"'4-(6-""3) is a LPF with null at QO=T.

DC valve @ Hy(ed?) = 4.
&

S Helays leatle T2 gB g% 12
I+ 2"

has 4 zerps arovnd the unit circle.
No 2ejo ol 2Z= 1) others at Axlie =)
Hs(e}‘z) s a HPF with nulls ad W = ﬂI ) _“:3'_1_"_

- = . 1-z4
S+ H(@ = 1+2"' +2%+ 23 = -

has 3 Zeros around the vat circle of z=%) -

H(€7®) is a LPF with nolls ok =tr

-6
S7: H,(2)= l+EE e E TN 25 = 2_,
-2 J“'k/?u

Was 5 zeros around +he uvnit circle ot 2=

(o

Hy (e3) s a LPF with wolls at &=+, t2r w
Pz#1: S PZ#3. S, P2#5: S;
Pz#2: S, P2#4" S¢ PR#6: Sy
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PROBLEM 8.16:

PZ#1: zero ot 2z=1 => zep ot L =0
cmla ('D) K3s a zev ot DC

PZ#2: pole on aeal axis but for from z= 1.
=> LPF with very wde passband. (B)

PZ#3: Po\e very close Yo 2=\ => Warrow LPF
also, zeyo at z= -1 => zep ol O=T (A)

PZ#4: pole amgles ane opproximalely T4
=> peoks hear o=t (E)
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PROBLEM 8.20:

Usin3 .FS: {oo0 SGMP|€S/5ec., we cawn cle*e.rmine. X[y

Xnl = x({)l{-‘-'%ﬁ =4 + cos(S'OO?rL )-—5@5(204:0_1[,1__
3

{ooo 3 1000

X[nl= 4—+C¢5(T£n)—3<‘.os(3——%-n)
Use +he £ Lemey respowns ot &=0,T aud 231':
+o determine yin}:
Y= 4 H(e®) + [H(E™)| cos Tns L H (™))
-3 | H(@ ™) cos(Zn + L H(eT™Y)

Since H(2) has zers ot 2= and 2= e_rJ"/;-
the 'Fre-‘bm‘j rEsponse l".'T 2eo ok G=0d S=Tp
Thos we o“lj nee_c.\ H(e-‘z.w/’)‘: / e i3
e (e -
(1-04)(1-0.9€3™)

[ .65' (-]
= 105227 " mé o 2.064 @

Yyl = - 3(i0.522) cos( 2Tn +0O. (571) INCORPORATE
MINLS SIGN
= 3(.566L cos(;‘-g:n—o.343rr) IN THE PHASE

Now cowvert back +o conbinvous-time.
)’Uﬂ: yin) lh"‘cst = 31.5¢¢ @5(2_%‘(11::00)& -6.343 n)
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PROBLEM 9.2:

(a) An exponentiation system is defined by the input/output relation v(r) = explx(t + 2)] = &t 2)

(i) Linear: The system is not lincar because the sum of two inputs will give an output that is the
product of the corresponding outputs:
xi(r) = yi(1) = e+
xa(1) = ya(t) = 20+

(1) + xa(r) — £j,1-|tr+2:n+x_;_[.r+2p — Ex|u+2}£_1.-::r+2:| = yi()ya(1)

(i1) Time-invariant: The system is time-invariant because the system definition is a point-wise
operator:

.T||:l':| — _"I(f} — E.'l.'|“+3:l

0l —=n)—= v = E-‘-'|H+3—F|J — ‘,_,IH{I—HHH =yt —1)
(iii) Srable: The system is stable because the system definition is a point-wise operator. If the

input signal is bounded by M, i.e., max{|x[n]|} = M., then the output signal is bounded by
M, = eMx,

{(iv) Causal: The sysiem is nof causal because the system definition involves a time-shift of (r + 2)
which is a shift by —2, Here is a counter-example:

xp(ty = wuit) = vin = E"[H'E:' = EI!!(I + 2)

In other words, the input “starts”™ at 1 = 0, while the output “starts earlier” at r = =2,

(b) A phase modulator is a system whose input and output satisfy a relation of the form v(r) = cosla.t + x(1)]

(i) Linear: The system is not linear because the sum of two inputs will give an output that is the
not the sum of the corresponding outputs. Let one of the input signals be the zero signal to get
a counterexample:

x100) = vi(t) = cosfat + x100)]
x2(t) =0 = valt) = coslat + x2(r)] = cos[mw.r]
x1(t) + x2(t) — coslat + x1(t) + x200)] = coslanct + x1(0)] = v(t) & vi(1) + valt)

(it} Time-invariant: The system is mof time-invariant because the system definition contains a
component that does not depend on x(r). Here is a counterexample with a unit-step signal:

x1(t) = mult) = wiit) = coslwet + mult)] = coslat lu(—r) — coslatJult)
X =1y=mult — 1) = vait) = cos|w.t + muir — 1)] = cos[ewtu(l — 1) — cosle.t|uir — 1)
but, vy = 1) = cosla (1 — 1) |u(l — 1) — cos|e(f — 1) ]uir = 1)

Thus, y2(¢) # vi(r — 1) which means that v2(r) is not a shifted version of vy ().
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PROBLEM 9.2 (more):
(iii) Srable: The system is stable because the output will always be bounded by one, independent
of the values of x(r).

(iv) Causal: The system is causal because the output y(r) depends only on the value of the input
x(r) at the same time. No values of x(¢) from the future (or the past) are used.

(c) An amplitude modulator is a system whose input and output satisfy a relation of the form yir) = [A + x ()] cosia.r)

(i) Linear: The system is nof linear because the sum of two inputs will give an output that is the
not the sum of the corresponding outputs. Let one of the input signals be the zero signal to get
a counterexample:

X1ty = v = [A + xy (1) ] cos(amt)

x2(1) =0 = va(t) = [A + xa(r) | coslwt) = A cos|w,1]
ey xale) = A+ 2 (r) + xa(r)]cos(mer) = [A 4+ x(1)]coslwpt) = vi(1) #= yi(1) + vait)

(ii) Time-invariant: The system is not time-invariant because the system definition contains a
component that does not depend on x(r). Here is a counterexample with a unit-step signal:
xpt) = —Ault) — vi(t) = |A — Aulr)]coslew.t) = A coslat lu(—1)
xpt = 1) = Ault = 1) = yvalt) = |A — Aulr — 1) cos{w1) = A cos|w.t|u(l — 1)
but, yj(r — 1) = Acosla(t — 1) ]u(l — 1}

Thus, v2(1) £ vi(r — 1) which means that v2(r) is not a shifted version of vi(r).
(iii) Srable: The system is stable because the ontput will always be bounded by |A + max{|x[a][}.

(iv) Causal: The system is causal because the output v(r) depends only on the value of the input
x(r) at the same time. No values of x(r) from the future (or the past) are used.
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PROBLEM 9.2 (more):

x(r) 4+ xi(—r})

(dy A system that takes the even part of an input signal is defined by a relation of the form y(r) = Evlxir)} = 3

(i) Linear: The system is linear, so we have to prove both the scaling property and the superposi-
tion property:
xi(t) = yi(t) = 5x1(0) + 3x1(=1)
xa(t) = y2(0) = Jxa(t) + fxa(=1)

x1(0) + x2(8) = L1 (D) + x200) + 001 (=6) + x2(—1))
= 3(x1 (1) + xp(—1)) + 3(x2(1) + x2(—1)) = y1 (1) + ya(1)

Bxi(t) = L(Bxi(1) + 5(Bxi(=0) = B (5x1() + fx1(=0) = By ()
(i1) Time-invariant: The system is not time-invariant because the system definition contains a flip.
Here is a counterexample with a unit-impulse signal:
x1(1) = 8(1) — yi(1) = ${8(1) + (=)} = 8(1)
xr=N=8t=1)—= yi)= E{éu —D+8(—1—1n}=

B =

delta(t — 1) + $6(1 + 1))
but, yi(t — 1) = 8(t — 1)

Thus, v2(t) # vt — 1) which means that v2(t) is not a shifted version of v;(1).

(iii) Srable: The system is stable because the output will always be bounded by max{|x[n]]}].

max{|y[n]|} = max{|3x (1) + $x(=0)|} < § max{|x[n][}| + § max{|x[n]]}|

(iv) Causal: The system is nof causal because the flip component of the system definition creates a
component in negative time. The signal 8(r — 1) provides a counterexample. From above, the

input “starts” at t = 1, while the output “starts earlier” at r = —1.
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PROBLEM 9.8:
~-at -at
)’(-l*): e ul#) ¥ e ul(t)
. Y oo -a( -t)
28 e ulr)e w(¢t-t)dT
t _ ot
={e” g¥e dr  If t=0
(s]
t —at —at B —at
= (e*de = € Yd.’t‘=1‘:e
) 0
TE t<o, thew ult)ult-T)=0 aud +he
M+e9ramd is z2efo. So we ean write the
Lma|l omswer as:
&
y(+)= Ee ult)
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PROBLEM 9.12:

Riy= €212 (w2 - ue~12))
(@) The system is stable becawse § 1A(¥)|dt <o0

12 - 12
SQI-R&)IJ.{; ={ i PTRP (at = 10<o0
—~c0 2 2

(®) The system is causal because h(t)=0 for t<o.
A P\o{' of K1) starks ot t=2.

@) x@)= §(+-2)
= y)= S@-2) X R(¢)
= R(t-2)
= g2'CENui-4)-ult-14))

McClellan, Schafer and Yoder, Sgnal Processing First, ISBN 0-13-065562-7. This page should not be copied or electronically transmitted unless prior written
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PROBLEM 9.17:
Z+a
W )= f ()
A +2

LT = (79 =4 AR)=| r)dr = «(7)
-/ /

2

= u(#+3) il d-2) = _I‘ / ! >Z

€) No, it ia sl cawaal Locawoo A(4)=1 for -2<t<0
[4) ?ﬁ(i) - / (1) (£ -1 d 7 = /4(,[#;)[@(#7#;)—4(#-7—9)]&?’

1 ] "”(‘t'*i)
' .
[ B

i-‘l t+a

@(;ﬁl 1+2< -1 2 <-3 %/:t) =0

Keglen 2 £42Z ] wnd L-2<-r L
212

7(:9://‘4&?“ 7'/ *;f+.z+; =43
N )/:bﬂ
- T 7+ D=[147+= 4
Region 3 =27~ > )
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PROBLEM 9.20:

-{1-t-2)
(@) 'R(t“t) for t=1 is -'R(l—'l','): e<l u,(f"t"l)
- (1= L Furt smiFT by L
K(-t)=¢ W(1-T) - prTs @ e

oA |
>

o To

(b)Y Yes, the systews is causal because h(¥)=0 for t<o.
Ta fact, W(t)=06 {for t<a. n

(©) To test for stabilily we do Hhe iul—ez/m.ﬂ EWIhtf)ldt
oo (4. oD - ) - t"‘ﬂ) o0 0
S \e“ mu({-—n)lcl’c: g e,(bzdt = 6( = o-:% = | <°@
-0 2 | 2
Thus the systewm is stable.

(d) See the resvlt fown Hhe convolvhow belav: £,=2

(&) Flip } slide x(t)= utf\/,m
! 'Y

ul{-t) for t=1

|-
ule-t) for t=4 *

z 4

»

»T

Frow. +he CL\’aw‘"gS, there is NO ove.r\ap whea £<2.
= ylHH=o for t<.
For t 22, we have overlap frome t=2 vp to +=t.

t  _(e-2 —(t-2) |t
yt.'k):'— S 1~e.(t1d'c: e
2

)= M g et
il |

=1
yth= (1-€%7)uit-2)

{ ‘}’ L s
‘/_-— .‘, f
\ : )
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PROBLEM 9.24:
(@) when x()=§(H)
W (t) = §(t+1) and wa(t)= §(t-2)
= vik)= W)= wi ()= S(t+) —§(E-2)
The iw\Pulse response of an inl—ejro\}o-r is u(t)
= y®)= ulE)x[ S+ - §(6-3]]
= W(Lt)—U(k-2) - THIS S RH)
I 2t

O elsewhere

KAb)= ultrN-ult-2)= i

(b) The overall systew. s NOT causal
Because h({t)+0 for t<o

(c.) The overall S\js{-w is stable
Bex;w lhu;)lcl{: 1|CH:=‘3<DO
§Inelie = ¢
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