Fundamentals of DSP Chap 2: Sinusoids

Chia-Wen Lin
Dept. CSIE, National Chung Cheng Univ.
Chiayi, Taiwan

Who Should Take this Course?

- Applications of DSP
- Multimedia (audio, speech, image, and video) signal processing
- Communication and Networking
- Biomedical applications
- Radar
- Seismic wave analysis
- SOC for signal processing and communication
- Time series analysis (e.g., power load forecasting, Stock market trend analysis, etc.)

Covering Fields

Why to Use DSP?

- Mathematical abstractions lead to generalization and discovery of new processing techniques
- Computer implementations are flexible
- Applications provide a physical context

Where to Use DSP?

- Telecommunications
- Sound \& Music
- CDROM, Digital Video
- Fourier Optics
- X-ray Crystallography
- Protein Structure \& DNA
- Computerized Tomography
- Nuclear Magnetic Resonance: MRI
- Radioastronomy
- Ref: Prestini, "The Evolution of Applied Harmonic Analysis"

MRI Image of Brain

Radioastronomy

\qquad

Chapter Objectives

- Write general formula for a "sinusoidal" waveform, or signal
- From the formula, plot the sinusoid versus time
- Define sinusoidal from a plot
- Relate Time-Shift to Phase
- What's a signal?
- It's a function of time, $x(t)$
- in the mathematical sense

Tuning Fork Example

- CD-ROM demo
- "A" is at 440 Hertz (Hz)
- Waveform is a SINUSOIDAL SIGNAL
- Computer plot looks like a sine wave
- This should be the mathematical formula:

$$
A \cos (2 \pi(440) t+\varphi)
$$

Speech Example

- More complicated signal (BAT.WAV)
- Waveform $x(t)$ is NOT a Sinusoid
- Theory will tell us
- $\boldsymbol{x}(\boldsymbol{t})$ is approximately a sum of sinusoids
- FOURIER ANALYSIS
- Break $\boldsymbol{x}(\boldsymbol{t})$ into its sinusoidal components
- Called the FREQUENCY SPECTRUM

Speech Signal: BAT

- Nearly Periodic in Vowel Region
- Period is (Approximately) $\mathrm{T}=0.0065 \mathrm{sec}$

Speech: BAT

Digitizing the Waveform

- $x[n]$ is a SAMPLED SINUSOID
- A list of numbers stored in memory
- Sample at 11,025 samples per second
- Called the SAMPLING RATE of the A/D
- Time between samples is
- $1 / 11025=90.7$ microsec
- Output via D/A hardware (at $F_{\text {samp }}$)

Storing Digital Sound

- $x[n]$ is a SAMPLED SINUSOID
- A list of numbers stored in memory
- CD rate is 44,100 samples per second
- 16-bit samples
- Stereo uses 2 channels
- Number of bytes for 1 minute is
- $2 \times(16 / 8) \times 60 \times 44100=10.584$ Mbytes

Sines and Cosines

- Always use the COSINE FORM

$$
A \cos (2 \pi(440) t+\varphi)
$$

- Sine is a special case:

$$
\sin (\omega t)=\cos \left(\omega t-\frac{\pi}{2}\right)
$$

Sinusoidal Signal

$A \cos (\omega t+\varphi)$

- FREQUENCY
- Radians/sec
- Hertz (cycles/sec) $\omega=(2 \pi) f$
- PERIOD (in sec)

$$
T=\frac{1}{f}=\frac{2 \pi}{\omega}
$$

Example of Sinusoid

- Given the Formula

$$
5 \cos (0.3 \pi t+1.2 \pi)
$$

- Make a plot

Sinusoidal Waveform

Plot a Cosine Signal

$$
5 \cos (0.3 \pi t+1.2 \pi)
$$

- Formula defines A, ω, and φ

$$
\begin{aligned}
& \hline A=5 \\
& \omega=0.3 \pi \\
& \varphi=1.2 \pi
\end{aligned}
$$

Plot a Cosine Signal from the Formula

$$
5 \cos (0.3 \pi t+1.2 \pi)
$$

- Determine period:

$$
T=2 \pi / \omega=2 \pi / 0.3 \pi=20 / 3
$$

- Determine a peak location by solving

$$
(\omega t+\varphi)=0 \quad \Rightarrow(0.3 \pi t+1.2 \pi)=0
$$

- Zero crossing is T/4 before or after
- Positive \& Negative peaks spaced by T/2

Plot the Sinusoid

$5 \cos (0.3 \pi t+1.2 \pi)$

- Use $T=20 / 3$ and the peak location at $t=-4$

Trig Functions

- Circular Functions
- Common Values
- $\sin (k \pi)=0$
- $\cos (0)=1$

- $\cos (2 k \pi)=1$ and $\cos ((2 k+1) \pi)=-1$
- $\cos ((k+0.5) \pi)=0$

Time Shift

- In a mathematical formula we can replace t with $t-t_{m}$

$$
x\left(t-t_{m}\right)=A \cos \left(\omega\left(t-t_{m}\right)\right)
$$

- Then the $t=0$ point moves to $t=t_{m}$
- Peak value of $\cos \left(\omega\left(t-t_{m}\right)\right)$ is now at $t=t_{m}$

Phase \leftrightarrow Time-Shift

- Equate the formulas:
$A \cos \left(\omega\left(t-t_{m}\right)\right)=A \cos (\omega t+\varphi)$
- and we obtain: $-\omega t_{m}=\varphi$
- or,

$$
t_{m}=-\frac{\varphi}{\omega}
$$

Sinusoid from a Plot

- Measure the period, T
- Between peaks or zero crossings
- Compute frequency: $\omega=2 p / T$
- Measure time of a peak: t_{m}
- Compute phase: $f=-\omega t_{m}$
- Measure height of positive peak: A

(A, ω, φ) from a PLOT

$$
T=\frac{0.01 \mathrm{sec}}{1 \text { period }}=\frac{1}{100} \longrightarrow \omega=\frac{2 \pi}{T}=\frac{2 \pi}{0.01}=200 \pi
$$

$$
t_{m}=-0.00125 \mathrm{sec} \longrightarrow \varphi=-\omega t_{m}=-(200 \pi)\left(t_{m}\right)=0.25 \pi
$$

Sine Drill (MATLAB GUI)

-) Reading Sinusoids Drill v2.04
Answers Options Help

Phase is Ambiguous

- The cosine signal is periodic
- Period is 2π

$$
A \cos (\omega t+\varphi+2 \pi)=A \cos (\omega t+\varphi)
$$

- Thus adding any multiple of 2π leaves $x(t)$ unchanged
if $t_{m}=\frac{-\varphi}{\omega}$, then
$t_{m_{2}}=\frac{-(\varphi+2 \pi)}{\omega}=\frac{-\varphi}{\omega}-\frac{2 \pi}{\omega}=t_{m}-T$

Complex Numbers

- To solve: $z^{2}=-1$
- $\mathrm{z}=\boldsymbol{j}$
- Math and Physics use z = i
- Complex number: $z=x+\boldsymbol{j} y$

Plot Complex Numbers

Complex Addition = Vector Addition

Polar Form

- Vector Form
- Length =1
- Angle $=\theta$
- Common Values
- has angle of $0: 5 \pi$
- - 1 has angle of π
- - j has angle of 1.5π
- also, angle of $-j$ could be $-0.5 \pi=1.5 \pi-2 \pi$
- because the PHASE is AMBIGUOUS

Polar \leftrightarrow Rectangular

- Relate (x, y) to (r, q)

$$
\begin{aligned}
& r^{2}=x^{2}+y^{2} \\
& \theta=\operatorname{Tan}^{-1}\left(\frac{y}{x}\right)
\end{aligned}
$$

Need a notation for POLAR FORM

Euler's Formula

- Complex Exponential
- Real part is cosine
- Imaginary part is sine
- Magnitude is one

$$
e^{j \theta}=\cos (\theta)+j \sin (\theta)
$$

$$
r e^{j \theta}=r \cos (\theta)+j r \sin (\theta)
$$

Complex Exponential

$$
e^{j \omega t}=\cos (\omega t)+j \sin (\omega t)
$$

- Interpret this as a Rotating Vector
- $\theta=\omega t$
- Angle changes vs. time
- ex: $\omega=20 \pi \mathrm{rad} / \mathrm{s}$
- Rotates 0.2π in 0.01 secs

$$
e^{j \theta}=\cos (\theta)+j \sin (\theta)
$$

Cosine $=$ Real Part

Real Part of Euler's

$$
\cos (\omega t)=\mathfrak{R e} e\left\{e^{j \omega t}\right\}
$$

General Sinusoid

$$
x(t)=A \cos (\omega t+\varphi)
$$

So,

$$
\begin{aligned}
A \cos (\omega t+\varphi) & =\mathfrak{R e}\left\{A e^{j(\omega t+\varphi)}\right\} \\
& =\mathfrak{R e}\left\{A e^{j \varphi} e^{j \omega t}\right\}
\end{aligned}
$$

Real-Part Example

$$
A \cos (\omega t+\varphi)=\mathfrak{R} e\left\{A e^{j \varphi} e^{j \omega t}\right\}
$$

Evaluate:

$$
x(t)=\Re e\left\{-3 j e^{j \omega t}\right\}
$$

Answer:

$$
\begin{aligned}
& x(t)=\mathfrak{R} e\left\{(-3 j) e^{j \omega t}\right\} \\
& =\mathfrak{R} e\left\{3 e^{-j 0.5 \pi} e^{j \omega t}\right\}=3 \cos (\omega t-0.5 \pi)
\end{aligned}
$$

Complex Amplitude

General Sinusoid

$$
\begin{aligned}
& \quad x(t)=A \cos (\omega t+\varphi)=\mathfrak{R e}\left\{A e^{j \varphi} e^{j \omega t}\right\} \\
& \text { Complex AMPLITUDE }=x \\
& z(t)=X e^{j \omega t} \quad X=A e^{j \varphi}
\end{aligned}
$$

Then, any Sinusoid $=$ REAL PART of $X e^{j o t}$

$$
x(t)=\mathfrak{R e}\left\{X e^{j \omega t}\right\}=\mathfrak{R e}\left\{A e^{j \varphi} e^{j \omega t}\right\}
$$

Phasor Representation

- Phasors = Complex Amplitude
- Complex Numbers represent Sinusoids

$$
z(t)=X e^{j \omega t}=\left(A e^{j \varphi}\right) e^{j \omega t}
$$

- Develop the ABSTRACTION:
- Adding Sinusoids = Complex Addition
- PHASOR ADDITION THEOREM

AVOID Trigonometry

- Algebra, even complex, is EASIER !!!
- Can you recall $\cos \left(\theta_{1}+\theta_{2}\right)$?
- Use: real part of $e^{j\left(\theta_{1}+\theta_{2}\right)}=\cos \left(\theta_{1}+\theta_{2}\right)$
$e^{j\left(\theta_{1}+\theta_{2}\right)}=e^{j \theta_{1}} e^{j \theta_{2}}$
$=\left(\cos \theta_{1}+j \sin \theta_{1}\right)\left(\cos \theta_{2}+j \sin \theta_{2}\right)$
$=\left(\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}\right)+j(\ldots)$

Euler's Formula

- Complex Exponential
- Real part is cosine
- Imaginary part is sine
- Magnitude is one

$$
e^{j \theta}=\cos (\theta)+j \sin (\theta)
$$

$e^{j \omega t}=\cos (\omega t)+j \sin (\omega t)$

Real \& Imaginary Part Plots

Complex Exponential

$$
e^{j \omega t}=\cos (\omega t)+j \sin (\omega t)
$$

- Interpret this as a Rotating Vector
- $\theta=\omega t$
- Angle changes vs. time
- ex: $\omega=20 \pi \mathrm{rad} / \mathrm{s}$
- Rotates 0.2π in 0.01 s

$$
e^{j \theta}=\cos (\theta)+j \sin (\theta)
$$

Addition of Two Sinusoids

- ALL SINUSOIDS have SAME FREQUENCY
- HOW to GET \{Amp,Phase\} of RESULT?

$$
\begin{aligned}
x_{1}(t) & =1.7 \cos (2 \pi(10) t+70 \pi / 180) \\
x_{2}(t) & =1.9 \cos (2 \pi(10) t+200 \pi / 180) \\
x_{3}(t) & =x_{1}(t)+x_{2}(t) \\
& =1.532 \cos (2 \pi(10) t+141.79 \pi / 180)
\end{aligned}
$$

Addition of Two Sinusoids (Cont.)

- Sum Sinusoid has SAME Frequency

Phasor Addition Rule

$$
\begin{aligned}
x(t) & =\sum_{k=1}^{N} A_{k} \cos \left(\omega_{0} t+\phi_{k}\right) \\
& =A \cos \left(\omega_{0} t+\phi\right)
\end{aligned}
$$

Get the new complex amplitude by complex addition

$$
\sum_{k=1}^{N} A_{k} e^{j \phi_{k}}=A e^{j \phi}
$$

Phasor Addition Proof

$$
\begin{aligned}
\sum_{k=1}^{N} A_{k} \cos \left(\omega_{0} t+\phi_{k}\right) & =\sum_{k=1}^{N} \Re e\left\{A_{k} e^{j\left(\omega_{0} t+\phi_{k}\right)}\right\} \\
& =\Re e\left\{\sum_{k=1}^{N} A_{k} e^{j \phi_{k}} e^{j \omega_{0} t}\right\} \\
& =\Re e\left\{\left(\sum_{k=1}^{N} A_{k} e^{j \phi_{k}}\right) e^{j \omega_{0} t}\right\} \\
& =\Re e\left\{\left(A e^{j \phi}\right) e^{j \omega_{0} t}\right\}=A \cos \left(\omega_{0} t+\phi\right)
\end{aligned}
$$

Pop Quiz: Phasor Addition

- ADD THESE 2 SINUSOIDS:
$x_{1}(t)=\cos (77 \pi t)$
$x_{2}(t)=\sqrt{3} \cos (77 \pi t+0.5 \pi)$
- COMPLEX ADDITION:

$$
1 e^{j 0}+\sqrt{3} e^{j 0.5 \pi}
$$

Pop Quiz (Answer)

- COMPLEX ADDITION:

- CONVERT back to cosine form:

$$
x_{3}(t)=2 \cos \left(77 \pi t+\frac{\pi}{3}\right)
$$

Conversion of Time-Shift to Phase

- Measure peak times:
- $t_{m 1}=-0.0194, t_{m 2}=-0.0556, t_{m 3}=-0.0394$
- Convert to phase ($\mathrm{T}=0.1$)
- $\varphi_{1}=-\omega t_{m 1}=-2 \pi\left(t_{m 1} / T\right)=70 \pi / 180$,
- $\varphi_{2}=200 \mathrm{p} / 180$
- Amplitudes
- $A_{1}=1.7, A_{2}=1.9, A_{3}=1.532$

Phasor Addition: Numerical

- Convert Polar to Cartesian
- $X_{1}=0.5814+j 1.597$
- $X_{2}=-1.785-j 0.6498$
sum =
$X_{3}=-1.204+j 0.9476$
- Convert back to Polar

- $X_{3}=1.532$ at angle $141.79 \pi 180$
- This is the sum

