
2004/1/8 © 2003, JH McClellan & RW Schafer 1

Signal Processing First

Lecture 27
Computing the Spectrum

2004/1/8 © 2003, JH McClellan & RW Schafer 2

Discrete Fourier Transform
(DFT)

Sampling the Fourier Transform: given an aperiodic
signal x(n), finite or infinite, its continuous DTFT X(ejω) --
may not be a closed-form function,

Since X(ejω) is periodic with period 2π, and we are also
concerned with memory storage of all continuous
samples of X(ejω) within ω ∈ [0,2π) , let us sample N
points in frequency!!

() () , DT FT

1() () , Inverse DT FT
2

j j n

n

j j n

X e x n e

x n X e e dw

ω ω

π
ω ω

ππ

∞
−

=−∞

−

=

=

∑

∫

2

2() () ()|
kjj N

k
N

X k X e X e
π

ω
πω=

= =

2004/1/8 © 2003, JH McClellan & RW Schafer 3

Discrete Fourier Transform
(DFT)

What is the corresponding time domain sequence

Define

)(~ nx

21

0

12

0
0

1 2() () ,
2

 that the original inverse DTFT
2,

knN j
N

k

N

k

x n X k e
N

Note

dw
N

π

π

π
π

π

−

=

−

=

=

⇒ ⇒

∑

∑∫

()

1 1 2

0 0

1

0

1 1() () ()

1() () ()

() * () ()

N N kmjkn knN
N N

k k m

N
k n m

N
m k m r

r r

x n X k W x m W
N N

x m W x m n m rN
N

x n n rN x n rN

e
π

δ

δ

− − ∞
−− −

= = = −∞

∞ − ∞ ∞
− −

= −∞ = = −∞ = −∞

∞ ∞

= −∞ = −∞

⎡ ⎤= = ⎢ ⎥⎣ ⎦
⎡ ⎤

= = − −⎢ ⎥⎣ ⎦

= − = −

∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑

2j
N

NW e
π

−=

2004/1/8 © 2003, JH McClellan & RW Schafer 4

Formal Definition of DFT

Major Difference between DFT & DTFT: DFT only
define discrete sets of X(ejωk) N-points, while DTFT
defines the continuous set of X(ejω), from 0 to 2π.
Both DFT and DTFT uniquely correspond to the set
of x(n)!

1

0

1

0

() , 0 -1
 ()

0, otherwise

1 () , 0 -1
 ()

0, otherwise

N
nk

N
n

N
nk

N
k

x n W k N
DFT X k

X k W n N
IDFT x n N

−

=

−
−

=

⎧ ≤ ≤⎪= ⎨
⎪⎩
⎧

≤ ≤⎪= ⎨
⎪⎩

∑

∑

2004/1/8 © 2003, JH McClellan & RW Schafer 5

The DFT Basis Vector for N = 8

Real
Part

Imaginary
Part

2004/1/8 © 2003, JH McClellan & RW Schafer 6

Frequency Sampling Theorem

If x(n) is time limited (i.e., of finite duration) to [0, N-1], then N
samples of X(z) on the unit circle completely determine X(z), for
all z!
Proof: since N samples of X(z) on unit circle is equivalent to
X(ejωk) whose IDFT exactly recovers N-sample x(n) without any
aliasing error, therefore we can base on that information to
derive the X(z).

1

0

1 1 1 1

0 0 0 0

1 1

1 1
0 0

() ()

1 1() ()

1 1 ()1 ()
1 1

N
n

n

N N N N
k n n k n n

N N
n k k n

k n N NN N
N

k k
k kN N

X z x n z

X k W z X k W zNN

W z z X kX kN W z N W z

−
−

=

− − − −
− − − −

= = = =

− − −− −

− − − −
= =

=

⎧ ⎫ ⎧ ⎫
= =⎨ ⎬ ⎨ ⎬

⎩ ⎭ ⎩ ⎭
⎧ ⎫− −

= =⎨ ⎬− −⎩ ⎭

∑

∑ ∑ ∑ ∑

∑ ∑

2004/1/8 © 2003, JH McClellan & RW Schafer 7

Example (DTFT)

3
2

1, 0 3
()

0, else

sin(2)() { ()}
sin(/ 2)

jj

n
x n

X e DTFT x n e
ω

ω ω
ξ

−

≤ ≤⎧
= ⎨
⎩

= =

2004/1/8 © 2003, JH McClellan & RW Schafer 8

Example (DFT by Sampling DTFT)

Let us sample only 4 points on X(ejωk): X(k)=[4,0,0,0]

]1,1,1,1[)(
,....]1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1[)(~

=
=

nx
nx

2004/1/8 © 2003, JH McClellan & RW Schafer 9

Example (DFT by Sampling DTFT)

Let us sample 8 points of X(ejωk):

]0,0,0,0,1,1,1,1[)(
,....]1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1[)(~

=
=

nx
nx

2004/1/8 © 2003, JH McClellan & RW Schafer 10

Important Observations

Zero padding allows “lengthing” the finite duration
x(n), i.e., more frequency samples on X(k).
To obtain DTFT of the true x(n), we don’t need to go
through z-domain interpolation, i.e., from finite X(k) to
get X(z), based on the frequency sampling theorem,
then replace z by ejω. We just need to do a lot of zero
padding!
Zero padding gives “higher density spectrum”, but not
“higher resolution spectrum” -- since the
corresponding X(ejω) has been fixed.
To obtain better resolution spectrum, we need more
non-zero data in the time domain.

2004/1/8 © 2003, JH McClellan & RW Schafer 11

Zero-Padding in the Time Domain

(N-1) (M-1)

2004/1/8 © 2003, JH McClellan & RW Schafer 12

Zero-Padding in the Frequency
Domain

2004/1/8 © 2003, JH McClellan & RW Schafer 13

Useful Properties of DFT
Linearity
Circular Folding (place the x(n) and X(k)
circularly)
Conjugation
Conjugate Symmetry of Real Signal x(n)

Circular Convolution

1 2 1 2() () () ()ax n bx n aX k bX k+ ⇒ +

()() ()()N N
x n X k− ⇒ −

()()* *()
N

x n X k⇒ −

()()*()
N

X k X k= −

1 2 1 2() () () ()x n x n X k X k∗ ⇒

2004/1/8 © 2003, JH McClellan & RW Schafer 14

Inverse DFT by Forward DFT

Computing an IDFT by using direct DFT routine.
Some data processing (e.g., conjugating) is required.

1

0
1

* *

0
*1

*

0

1() ()

1() ()

1() ()

N
n k

N
k

N
n k

N
k

N
n k

N
k

x n X k W
N

x n X k W
N

x n X k W
N

−
−

=

−

=

−

=

=

=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠

∑

∑

∑

2004/1/8 © 2003, JH McClellan & RW Schafer 15

Computation of DFT

Recall DFT definition:
For each k, we need N complex multiplications. For
all N point of X(k), we need N2 complex
multiplications. Also we need storage of N complex
X(k) and all .
Some properties of can be exploited:

Other useful properties:

1

0
() () , 0 - 1

N
n k

N
n

X k x n W k N
−

=

= ≤ ≤∑

{ }nk
NW

W nk

N

()*()

() ()

k N n kn kn
N N N

kn k n N k N n
N N N

W W W

W W W

− −

+ +

= =

= =

(/ 2) / 2

2
/ 2

 if even
if odd

kn
k N n kn nN kn jn N

N N N N kn
N

kn kn
N N

W n
W W W W e

W n

W W

π+ − ⎧
= = = ⎨

−⎩
= 2004/1/8 © 2003, JH McClellan & RW Schafer 16

FOUR CLASSES OF FOURIER
TRANSFORM

C
on

tin
uo

us
 in

 fr
eq

ue
nc

y

Continuous in Time Discrete in time-Periodic in frequency

Fourier transform

∫

∫
∞

∞−

−

∞

∞−

=

=

dtetfF

dejFtf

tj

tj

ω

ω

ω

ωω
π

)()(

)(
2
1)(

∑

∫
∞

−∞=

−

−

=

=

k

TjkTj

T

T

TjkTj

ekfeF

deeFTkf

00

0

0

00

)()(

)(
2

)(0

ωω

π

π
ωω ω

π

Discrete time Fourier Transform

FT DTFT; T0

t k ω

0

2
T
π

f(k) F(ejωT0)

2004/1/8 © 2003, JH McClellan & RW Schafer 17

FOUR CLASSES OF FOURIER
TRANSFORM (CONT.)

D
is

cr
et

e
in

 fr
eq

ue
nc

y
–

pe
ri

od
ic

 in
 ti

m
e

Continuous in Time Discrete in time-Periodic in frequency

Fourier series

∫

∑

−
−

∞

−∞=

=

=

0

0

0

0

)(
2

)(

)()(

0 ω
π

ω
π

ω

ω

π
ω dtetfnF

enFtf

tjn

n

tjn

∑

∑
−

=

−

−

=

=

=

1

0

2

1

0

2

)()(

)(1)(

N

k

kn
N

j

N

n

kn
N

j

ekfnF

enF
N

kf

π

π

Discrete Fourier Transform

k

f(t)

0

2
ω
π

FSiω0

F(n)

t nω0

DFT:N

F(k) F(n)

n

2004/1/8 © 2003, JH McClellan & RW Schafer 18

DIRECT COMPUTATION OF
THE DFT

The direct computation
requires:
2N2 evaluations of
trigonometric functions.
4N2 real multiplications.
4N(N –1) real additions.
A number of indexing and
addressing operations.

C
C DFT SUBROUTINE
C ISEL = 0 : DFT
C ISEL = 1 : INVERSE DFT
C

SUBROUTINE DFT(N, XR, XI, XFR, XFI, ISEL)
DIMENSION XR(N), XI(N), XFR(N), XFI(N)
WN = 6.2831853 / FLOAT(N)
IF (ISEL.EQ.1) WN = - WN
DO 20 K = 1, N

XFR(K) = 0,
XFI(K) = 0,
KM1 = K – 1
DO 20 I = 1, N

IM1 = I – 1
ARG = WN * KM1 * IM1
C = COS(ARG)
S = SIN(ARG)
XFR(K) = XFR(K) + XR(I)*C + XI(I)*S
XFI(K) = XFI(K) – XR(I)*S + XI(I)*C

10 CONTINUE
IF (ISEL – 1) 20, 30, 20

30 XFR(K) = XFR(K) / FLOAT(N)
20 XFI(K) = XFI(K) / FLOAT(N)

CONTINUE
RETURN
END

∑

∑
−

=

−

=

⎥⎦
⎤

⎢⎣
⎡ −−=

⎥⎦
⎤

⎢⎣
⎡ +=

1

0

1

0

2cos)(2sin)()(

2sin)(2cos)()(

N

n
iRI

N

n
iRR

N
knnx

N
knnxkX

N
knnx

N
knnxkX

ππ

ππ

For a complex-valued sequence of N
points the DFT may be expressed as

2004/1/8 © 2003, JH McClellan & RW Schafer 19

Computation of DFT
Recall DFT definition:
For each k, we need N complex multiplications. For
all N point of X(k), we need N2 complex
multiplications. Also we need storage of N complex
X(k) and all .
Some properties of can be exploited:

Other useful properties:

1

0
() () , 0 - 1

N
n k

N
n

X k x n W k N
−

=

= ≤ ≤∑

{ }nk
NW

W nk

N

()*()

() ()

k N n kn kn
N N N

kn k n N k N n
N N N

W W W

W W W

− −

+ +

= =

= =

(/ 2) / 2

2
/ 2

 if even
if odd

kn
k N n kn nN kn jn N

N N N N kn
N

kn kn
N N

W n
W W W W e

W n

W W

π+ − ⎧
= = = ⎨

−⎩
= 2004/1/8 © 2003, JH McClellan & RW Schafer 20

Decimation in Time (DIT) FFT

How about group the data into even and odd parts:

()

1

0

2 2 1

/ 2 1 / 2 1
2 12

0 0
/ 2 1 / 2 1

/ 2 / 2
0 0

() () , 0 - 1

() ()

(2) (2 1)

(2) (2 1)

() ()

N
n k

N
n

n k n k
N N

n e v e n n o d d
n r n r

N N
r kr k

N N
r r

N N
r k k r k

N N N
r r

k
N

X k x n W k N

x n W x n W

x r W x r W

x r W W x r W

G k W H k

−

=

= =
= = +

− −
+

= =

− −

= =

= ≤ ≤

= +

= + +

= + +

= +

∑

∑ ∑

∑ ∑

∑ ∑

2004/1/8 © 2003, JH McClellan & RW Schafer 21

DIT FFT (Cont.)

G(k) is N/2 points DFT of the even numbered data: x(0),
x(2), x(4), …., x(N-2), assuming N is even. Note that
G(k) is defined over k = 0,1,…,N/2-1
Similarly, H(k) is the N/2 points DFT of the odd
numbered data: x(1), x(3), …, x(N-1). Also k =
0,1,…,N/2-1.
Since G(k) and H(k) are of length N/2, how can we
create X(k) of length N? G(k)=G(k+N/2) and
H(k)=H(k+N/2),

() () () , 0 , 1, . . . , 1k
NX k G k W H k k N= + = −

2004/1/8 © 2003, JH McClellan & RW Schafer 22

DIT FFT (Cont.)

2004/1/8 © 2003, JH McClellan & RW Schafer 23

DIT FFT (Cont.)
Note that the number of complex multiplications is
more or less reduced by half:

How about the computation of each N/2-point DFT?

2 2 2
2 2

2 2 2
N N NN N N⎛ ⎞⇒ + = + ≈⎜ ⎟

⎝ ⎠

/ 2 1

/ 2
0

1/ 4 1 4
2 2 (1)

/ 2 / 2
0 0

/ 4 1 / 4 1

/ 4 / 2 / 4
0 0

/ 2

() () , () (2)

(2) (2 1)

(2) (2 1)

() ()

N
r k

N
r

N
N

l k l k
N N

l l
N N

lk k l k
N N N

l l
k

g N g

G k g r W g r x r

g l W g l W

g l W W g l W

Q k W P k

−

=

−
−

+

= =

− −

= =

= =

= + +

= + +

= +

∑

∑ ∑

∑ ∑

2004/1/8 © 2003, JH McClellan & RW Schafer 24

DIT FFT (Cont.)

2004/1/8 © 2003, JH McClellan & RW Schafer 25

8-Point DIT FFT

2004/1/8 © 2003, JH McClellan & RW Schafer 26

Final Counts of DIT FFT
Each stage, N complex multiplications are required,
and stages are decomposed, therefore

Further reduction on “butterfly”, since

Now the number of complex multiplications is
reduced to

2log N

2
2log N complex multiplicationsN N⇒

2
Nr r

N NW W
+

= −

2
2log

2
NN N⇒

2004/1/8 © 2003, JH McClellan & RW Schafer 27

Final Counts of DIT FFT (Cont.)

5,1201,048,5761,024

2,304262,144512

1,02465,535256

44816,384128

1924,09664

801,02432

3225616

12648

4164

Complex
multiplications in
FFT algorithm,

(N/2)log2N

Complex
multiplications in
Direct Computation

N2

NFor N = 2v, this decimation can be
performed v = log2N times.

The total number of

Complex multiplications : (N/2) * log2N
Complex additions : N * log2N

2004/1/8 © 2003, JH McClellan & RW Schafer 28

Decimation in Frequency (DIF)
FFT

Let us now consider to group the 1st and 2nd halves:

()

1

0
/ 2 1 1

0 / 2
/ 2 1 / 2 1

/ 2

0 0
/ 2 1

/ 2

0
/ 2 1

0

() () , 0 k N - 1

() ()

() (/ 2)

() (/ 2)

() (1) (/ 2)

N
n k

N
n

N N
n k n k

N N
n n N

N N
n N kn k

N N
n n

N
n k N k n k

N N N
n

N
k n k

N
n

X k x n W

x n W x n W

x n W x n N W

x n W W x n N W

x n x n N W

−

=

− −

= =

− −
+

= =

−

=

−

=

= ≤ ≤

= +

= + +

= + +

⎡ ⎤= + − +⎣ ⎦

∑

∑ ∑

∑ ∑

∑

∑

2004/1/8 © 2003, JH McClellan & RW Schafer 29

DIF FFT (Cont.)
Consider k to be even: k = 2r

Similarly, k to be odd: k = 2r + 1

/ 2 1
2

0

/ 2 1

/ 2
0

/ 2 1

/ 2
0

(2) () ()
2

() ()
2

[]

N
r n

N
n

N
r n

N
n

N
r n

N
n

NX r x n x n W

Nx n x n W

a n W

−

=

−

=

−

=

⎡ ⎤= + +⎢ ⎥⎣ ⎦
⎡ ⎤= + +⎢ ⎥⎣ ⎦

=

∑

∑

∑

[]
/ 2 1

/ 2
0

/ 2 1

/ 2
0

(2 1) () (/ 2)

()

N
n r n

N N
n

N
n r n

N N
n

X r x n x n N W W

b n W W

−

=

−

=

+ = − +

=

∑

∑
2004/1/8 © 2003, JH McClellan & RW Schafer 30

DIF FFT (Cont.)

Similarly, the final counts
=

2log
2
N N

2004/1/8 © 2003, JH McClellan & RW Schafer 31

Important Issues of FFT
Not necessarily for N = 2v (power of two) length. Any
prime factor decomposition can save computation time,
e.g., N =15 = 3x5.
In place computation: after moving to a new stage, the
data can be overwritten to save the storage memory.
How to calculate the bit-reversal:

7 111111 7
3 011110 6

5 101101 5
1 001100 4
6 110011 3
2 010010 2
4 100001 1
0 000000 0

⇔
⇔
⇔
⇔
⇔
⇔
⇔
⇔

