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Signal Processing First

Lecture 27
Computing the Spectrum

2004/1/8 © 2003, JH McClellan & RW Schafer 2

Discrete Fourier Transform 
(DFT)

Sampling the Fourier Transform: given an aperiodic
signal x(n), finite or infinite, its continuous DTFT X(ejω) --
may not be a closed-form function,

Since X(ejω) is periodic with period 2π, and we are also 
concerned with memory storage of all continuous 
samples of X(ejω) within  ω ∈ [0,2π) , let us sample N
points in frequency!! 
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Discrete Fourier Transform 
(DFT)

What is the corresponding time domain sequence
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Formal Definition of DFT

Major Difference between DFT & DTFT:  DFT only 
define discrete sets of X(ejωk) N-points, while DTFT 
defines the continuous set of X(ejω), from 0 to 2π.
Both DFT and DTFT uniquely correspond to the set 
of x(n)!
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The DFT Basis Vector for N = 8

Real
Part

Imaginary
Part
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Frequency Sampling Theorem

If x(n) is time limited (i.e., of finite duration) to [0, N-1], then N
samples of X(z) on the unit circle completely determine X(z), for 
all z!  
Proof: since N samples of X(z) on unit circle is equivalent to 
X(ejωk) whose IDFT exactly recovers N-sample x(n) without any 
aliasing error, therefore we can base on that information to 
derive the X(z).
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Example (DTFT)
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Example (DFT by Sampling DTFT)

Let us sample only 4 points on X(ejωk): X(k)=[4,0,0,0]
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Example (DFT by Sampling DTFT)

Let us sample 8 points of X(ejωk): 

]0,0,0,0,1,1,1,1[)(
,....]1,1,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1[)(~
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Important Observations

Zero padding allows “lengthing” the finite duration 
x(n), i.e., more frequency samples on X(k).
To obtain DTFT of the true x(n), we don’t need to go 
through z-domain interpolation, i.e., from finite X(k) to 
get X(z), based on the frequency sampling theorem, 
then replace z by ejω.  We just need to do a lot of zero 
padding!
Zero padding gives “higher density spectrum”, but not 
“higher resolution spectrum” -- since the 
corresponding X(ejω) has been fixed.
To obtain better resolution spectrum, we need more 
non-zero data in the time domain.
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Zero-Padding in the Time Domain

(N-1) (M-1)
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Zero-Padding in the Frequency 
Domain
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Useful Properties of DFT
Linearity
Circular Folding (place the x(n) and X(k) 
circularly)
Conjugation
Conjugate Symmetry of Real Signal x(n)

Circular Convolution
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Inverse DFT by Forward DFT

Computing an IDFT by using direct DFT routine.  
Some data processing (e.g., conjugating) is required.
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Computation of DFT

Recall DFT definition:
For each k, we need N complex multiplications.  For 
all N point of X(k), we need N2 complex 
multiplications.  Also we need storage of N complex 
X(k) and all            .
Some properties of          can be exploited:

Other useful properties:
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FOUR CLASSES OF FOURIER 
TRANSFORM
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FOUR CLASSES OF FOURIER 
TRANSFORM (CONT.)
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DIRECT COMPUTATION OF 
THE DFT

The direct computation 
requires:
2N2 evaluations of 
trigonometric functions.
4N2 real multiplications.
4N(N –1 ) real additions.
A number of indexing and 
addressing operations.

C
C  DFT SUBROUTINE
C   ISEL = 0 : DFT
C   ISEL = 1 : INVERSE DFT
C

SUBROUTINE DFT(N, XR, XI, XFR, XFI, ISEL)
DIMENSION XR(N), XI(N), XFR(N), XFI(N)
WN = 6.2831853 / FLOAT(N)
IF (ISEL.EQ.1) WN = - WN
DO 20 K = 1, N

XFR(K) = 0,
XFI(K) = 0,
KM1 = K – 1
DO 20 I = 1, N

IM1 = I – 1
ARG = WN * KM1 * IM1
C = COS(ARG)
S = SIN(ARG)
XFR(K) = XFR(K) + XR(I)*C + XI(I)*S
XFI(K) = XFI(K) – XR(I)*S + XI(I)*C

10    CONTINUE
IF (ISEL – 1) 20, 30, 20

30    XFR(K) = XFR(K) / FLOAT(N)
20    XFI(K) = XFI(K) / FLOAT(N)

CONTINUE
RETURN
END
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For a complex-valued sequence of N
points the DFT may be expressed as
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Computation of DFT
Recall DFT definition:
For each k, we need N complex multiplications.  For 
all N point of X(k), we need N2 complex 
multiplications.  Also we need storage of N complex 
X(k) and all            .
Some properties of          can be exploited:

Other useful properties:
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Decimation in Time (DIT) FFT

How about group the data into even and odd parts:
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DIT FFT (Cont.)

G(k) is N/2 points DFT of the even numbered data: x(0), 
x(2), x(4), …., x(N-2), assuming N is even. Note that 
G(k) is defined over k = 0,1,…,N/2-1
Similarly, H(k) is the N/2 points DFT of the odd 
numbered data: x(1), x(3), …, x(N-1).  Also k = 
0,1,…,N/2-1.
Since G(k) and H(k) are of length N/2, how can we 
create X(k) of length N? G(k)=G(k+N/2) and 
H(k)=H(k+N/2),

( ) ( ) ( ) ,     0 , 1, . . . , 1k
NX k G k W H k k N= + = −
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DIT FFT (Cont.)
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DIT FFT (Cont.)
Note that the number of complex multiplications is 
more or less reduced by half:

How about the computation of each N/2-point DFT?
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DIT FFT (Cont.)
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8-Point DIT FFT
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Final Counts of DIT FFT
Each stage, N complex multiplications are required, 
and             stages are decomposed, therefore

Further reduction on “butterfly”, since

Now the number of complex multiplications is 
reduced to 

2log N

2
2log N  complex multiplicationsN N⇒

2
Nr r

N NW W
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2004/1/8 © 2003, JH McClellan & RW Schafer 27

Final Counts of DIT FFT (Cont.)

5,1201,048,5761,024

2,304262,144512

1,02465,535256

44816,384128

1924,09664

801,02432

3225616

12648

4164

Complex 
multiplications in 
FFT algorithm,

(N/2)log2N

Complex 
multiplications in 
Direct Computation

N2

NFor N = 2v, this decimation can be 
performed v = log2N times.

The total number of

Complex multiplications : (N/2) * log2N
Complex additions : N * log2N
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Decimation in Frequency (DIF) 
FFT

Let us now consider to group the 1st and 2nd halves:
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DIF FFT (Cont.)
Consider k to be even: k = 2r

Similarly, k to be odd: k = 2r + 1
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DIF FFT (Cont.)

Similarly, the final counts 
=

2log
2
N N

2004/1/8 © 2003, JH McClellan & RW Schafer 31

Important Issues of FFT
Not necessarily for N = 2v (power of two) length.  Any 
prime factor decomposition can save computation time, 
e.g., N =15 = 3x5.
In place computation: after moving to a new stage, the 
data can be overwritten to save the storage memory.
How to calculate the bit-reversal:

7   111111  7
3   011110  6

5   101101  5
1   001100  4
6   110011  3
2  010010  2
4  100001   1
0  000000  0

⇔
⇔
⇔
⇔
⇔
⇔
⇔
⇔


