
2012 資訊軟體技術人才培訓

Android多核心嵌入式多媒體系統設計與實作

Linux Sound Driver Architecture

賴槿峰 (Chin-Feng Lai)
Assistant Professor, institute of CSIE, National Ilan University

Oct 6th 2012
© 2012 MMN Lab. All Rights Reserved

• What is Multimedia

• Codec and Multimedia Format

• Android Multimedia System Introduction

• Sound Subsystem in Kernel

• Alternate Sound Drivers

• Main Linux Audio Driver

• Open Sound System, OSS

• Advanced Linux Sound Architecture, ALSA

• Related Embedded Player

• Lab

Outline

2

•What is Multimedia
•Codec and Multimedia Format
•Android Multimedia System Introduction

•Sound Subsystem in Kernel
•Alternate Sound Drivers
•Main Linux Audio Driver

•Open Sound System, OSS
•Advanced Linux Sound Architecture, ALSA

•Related Embedded Player
•Lab

3
3

• Multimedia is media and content that uses a combination of

different content forms

• Multimedia is the most important component in Android system

• Multimedia framework is used to process video/audio input and output

to satisfy certain functionality including

Speaker

RAW Video

What is Multimedia

Multimedia File
(contain Video/Audio Data) RAW Audio

Panel

RAW Video

RAW Audio Microphone

Camera

Encode

Decode

Container

4

• Codec

• A codec is a device or computer program capable

of encoding and/or decoding a digital data stream or signal.

• Raw multimedia data is huge, codec compress them to facilitate

store and transfer

• A codec encodes a data stream or signal for transmission,

storage or encryption and decode it for playback or editing.

• Codec1 = compressor decompressor

• Codec2 = coder decoder

What is Multimedia

5

• File Format

• Call Container or wrapper format

• The container file is used to identify and interleave different data

types. Simpler container formats can contain different types of

audio formats. Container does not describe how the data warped

is encoded. It not be able to decode contained data. You

maybe were told to download right decoder.

• Always contain coded video, coded audio, subtitles, chapter-

information, maybe advertisement and synchronization

information needed to playback various streams together

What is Multimedia

6

• Some containers are exclusive to audio

• AIFF (Mac OS)

• WAV (Windows)

• Other containers are exclusive to still images

• TIFF

• Other flexible containers can hold many types of audio

and video

• 3GP

• ASF(container for Microsoft WMA and WMV)

• AVI (the standard Microsoft Windows container, also based

on RIFF)

• MP4 (standard audio and video container for the MPEG-4)

• Flash Video (FLV, F4V)

What is Multimedia – Container Format

7

• multimedia File knowledge

• Organization

• ISO / IEC

• ITU-T

What is Multimedia

8

• Audio Related Format – MP3

• MP3 , which means MPEG-I or MPEG-2 Layer 3

• MPEG-1 Audio (MPEG-1 Part 3) ,Which included MPEG-1 Audio

layer I 、II and III , was published in 1993 (ISO/IEC 11172-3)

• MPEG-2 Audio (MPEG-2 Part3) with additional bit rate and

sample rate was published in 1995

• MP3 format is an lossy compression algorithm to reduce the

amount of data size , which reduce the file size up to 1/12 from

original

• MP3 format provide different bit rate(usually between 128 ~

320kbps) , moreover , the CD bit rate is 1411.2 kbps

• MP3 support different sampling rate , include MPEG-1

(32,44.1,48KHZ) 、MPEG-2(16,22,24KHZ)

What is Multimedia – MP3

9

• MP3 File Structure

MP3 Header

MP3 Data

MP3 Header

MP3 Data

MP3 Header

MP3 Data

……………..

MP3 Header

MP3 Data

MP3 SYNC Version Layer

Error Protection Bit Rate Frequency

Pad Bit Private Bit Mode

1:12 13 14:15

16 17:20 21:22

23 24 25:26

Mode Ext Copy Original

27:28 29 30

Emphasis

31:32

What is Multimedia – MP3

10

• Audio Related Format – AAC

• AAC (Advance Audio Coding) , which defined in MPEG-2

Audio(MPEG-2 Part 7) and MPEG-4 Audio(MPEG-4 Part 3)

• AAC is a wideband audio encoding algorithm , which use lossy

compression

• Signal components that are perceptually irrelevant are discarded

• Redundancies in the coded audio signal are eliminated

• More sample frequencies (from 8 to 96 kHz) than MP3 (16 to

48 kHz)

• Up to 48 channels

• Arbitrary bit-rates and variable frame length

• Much better handling of audio frequencies above 16 kHz

What is Multimedia – AAC

11

• AAC Encode Flow & AAC Profile

• AAC use Filter Bank 、Temporal Noise Shaping、Prediction and

Quantizer method to generate high quality audio stream

• There are three main AAC profile defined in MPEG-2 Part7

• MPEG-4 part 3 merge MPEG-2 Part7 basic profile and extend

some useful profiles

What is Multimedia – AAC

12

What is Multimedia – AAC

• AAC Encode Flow & AAC Profile

13

• Multimedia Module function

• Container format parser to recognize and unwrap file

• Codec to encode/decode data.

• Synchronization among various stream

• Memory/Buffer management

• Stream track control, playback, backwards play, forward play

• Integrated into video/audio output system

• Take advantage of hardware accleration

– Hardware codec

– Hardware overlay

– Hardware audio flinger

What is Multimedia

14

•What is Multimedia
•Codec and Multimedia Format
•Android Multimedia System Introduction

•Sound Subsystem in Kernel
•Alternate Sound Drivers
•Main Linux Audio Driver

•Open Sound System, OSS
•Advanced Linux Sound Architecture, ALSA

•Related Embedded Player
•Lab

15
15

Hardware Bootloader

Linux Kernel

(driver)

File

System

Android Multimedia System Introduction

• Android system and Embedded system

16

Media Player

Recorder App Media Player APP

android.media.MediaRecorder
./frameworks/base/media/

android.media.MediaPlayer
./frameworks/base/media/

Audio Flinger
./frameworks/base/libs/

Other Audio Driver

Surface Flinger
./frameworks/base/libs/

ALSA Driver

/dev/eac /dev/snd

android.view.Surface
./frameworks/base/core/

MediaPlayer iSurface

MediaPlayer Service
./frameworks/media

Hardware Codec
/dev/graphics/fb0

Audio HAL (ALSA lib)
./hardware/libhardware_legacy/

Gralloc HAL
./hardware/libhardware

stagefright
./frameworks/base/media/

OpenCore
./external/

/dev/video0

FB Driver V4L2 output Driver

MediaRecoder

Application

Framework

LIB

HAL

Kernel

libmedia

Android Multimedia System Introduction

17

Recorder App Media Player APP

android.media.MediaRecorder
./frameworks/base/media/

android.media.MediaPlayer
./frameworks/base/media/

Audio Flinger
./frameworks/base/libs/

Other Audio Driver

Surface Flinger
./frameworks/base/libs/

ALSA Driver

/dev/eac /dev/snd

android.view.Surface
./frameworks/base/core/

MediaPlayer iSurface

MediaPlayer Service
./frameworks/media

/dev/graphics/fb0

Audio HAL (ALSA lib)
./hardware/libhardware_legacy/

Gralloc HAL
./hardware/libhardware

stagefright
./frameworks/base/media/

OpenCore
./external/

/dev/video0

FB Driver V4L2 output Driver

MediaRecoder

Application

Framework

LIB

HAL

libmedia

TI OpenMAXTM

TI DSP Bridge

Android Multimedia System Introduction

Hardware Codec

Kernel
18

•What is Multimedia
•Codec and Multimedia Format
•Android Multimedia System Introduction

•Sound Subsystem in Kernel
•Alternate Sound Drivers
•Main Linux Audio Driver

•Open Sound System, OSS
•Advanced Linux Sound Architecture, ALSA

•Related Embedded Player
•Lab

19
19

• The sound subsystem manage all the sound feature in

linux kernel

• There are different type of hardware specification

support in kernel source tree , which locate in

kernel/sound

• The sound module are divided into many parts to satisfy

many unix platform

Sound Subsystem in Kernel

20

• Sound source layout in kernel

Sound Subsystem in Kernel

Directory Description

aoa Apple Onboard Audio driver

arm Support for sound devices specific to ARM architectures

core OSS API and ALSA API

i2c some i2c driver for ALSA

driver Some driver for sound card or chip

mips MIPS sound driver

oss oss architecture

pci Sound subsystem for pci device

soc ALSA for SoC audio support

usb Sound subsystem for usb device

21

• Linux Sound Card Type

• ISA bus

– The oldest sound cards using the original (non Plug and Play) ISA

bus

• ISA Plug and Play

– The extended version of the ISA bus that supports software

identification and configuration of card settings

• PCI bus

– The higher bandwidth PCI bus which provides identification and

configuration of cards in software

• USB

– The newer bus architecture for external hot-pluggable devices

Sound Subsystem in Kernel

22

• Linux Sound Card Type

• I2S

– The electrical serial bus interface standard used for connecting digital audio

devices together

• I2C

– I2C is a two-wire interface , which provide master/slave architecture to

provide faster data transfer

Sound Subsystem in Kernel

23

•What is Multimedia
•Codec and Multimedia Format
•Android Multimedia System Introduction

•Sound Subsystem in Kernel
•Alternate Sound Drivers
•Main Linux Audio Driver

•Open Sound System, OSS
•Advanced Linux Sound Architecture, ALSA

•Related Embedded Player
•Lab

24
24

• Linux Sound Card Type

• OSS/4Front

– Designed by 4Front Technologies that is supported on a number of

sound card , and also compatible with applications written for the

standard kernel sound drivers

• ALSA

– Advanced Linux Sound Architecture (ALSA) , are full duplex, fully

modularized, and compatible with the sound architecture in the

kernel

• Turtle Beach

– Which is designed for high quality hard disk recording/playback in

time

Alternate Sound Drivers

25

• Linux Sound Card Type

• Roland MPU-401

– MPU-401 compatible MIDI interfaces , with a useful collection of

utilities including a Standard MIDI File player and recorder

• SoundBlaster Live!

– Creative Labs developed Linux drivers for several cards

• PC Speaker

– An alternate sound driver for PC speaker , which provides much

lower quality output and has much more CPU overhead

Alternate Sound Drivers

26

•What is Multimedia
•Codec and Multimedia Format
•Android Multimedia System Introduction

•Sound Subsystem in Kernel
•Alternate Sound Drivers
•Main Linux Audio Driver

•Open Sound System, OSS
•Advanced Linux Sound Architecture, ALSA

•Related Embedded Player
•Lab

27
27

• Open Sound System (OSS)

• 2.4 kernel below

• Old sound card interface

• Advanced Linux Sound Architecture (ALSA)

• 2.6 kernel above

• New Age Sound card driver

• APIs for APP Layer programming

Main Linux Audio Driver

28

ALSA Application

ALSA Library API

Hardware Access

OSS API

OSS Userspace
Emulation
(libaoss)

ALSA Kernel API
(PCM、MIDI、Control、Sequence)

ALSA Kernel Driver

OSS API

OSS Kernel Driver

OSS Application OSS Application

Audio Hardware

User Space

Kernel Space

Hardware

Main Linux Audio Driver

ALSA-Lib

29

•What is Multimedia
•Codec and Multimedia Format
•Android Multimedia System Introduction

•Sound Subsystem in Kernel
•Alternate Sound Drivers
•Main Linux Audio Driver

•Open Sound System, OSS
•Advanced Linux Sound Architecture, ALSA

•Related Embedded Player
•Lab

30
30

• OSS Feature

• Open Sound System (OSS) is an audio interface for linux system

• OSS provide standard linux device for programming (POSIX

read , write , ioctl)

• Developed by 4Front Technologies teams

– http://www.4fronttech.com/oss.html

• Old sound card support system in Linux versions up to 2.4. Still

used for some cards in 2.6 (porting to ALSA in progress).

Open Sound System, OSS

31

• OSS Driver Device

• The major and minor numbers for these devices are defined in

Documentation/devices.txt in the kernel sources.

• Use mknod command to create the device file

Open Sound System, OSS

Host$ sudo mknod /dev/dsp c 14 3
Host$ sudo mknod /dev/mixer c 14 0

 14 Char Open Sound System (OSS)
 0 = /dev/mixer Mixer control
 1 = /dev/sequencer Audio sequencer
 2 = /dev/midi00 First MIDI port
 3 = /dev/dsp Digital audio
 4 = /dev/audio Sun-compatible digital audio
 6 =
 7 = /dev/audioctl SPARC audio control device
 8 = /dev/sequencer2 Sequencer -- alternate device

16 = /dev/mixer1 Second soundcard mixer control
17 = /dev/patmgr0 Sequencer patch manager
18 = /dev/midi01 Second MIDI port
19 = /dev/dsp1 Second soundcard digital audio
20 = /dev/audio1 Second soundcard Sun digital audio
33 = /dev/patmgr1 Sequencer patch manager
34 = /dev/midi02 Third MIDI port
50 = /dev/midi03 Fourth MIDI port

32

• OSS Driver Device

• /dev/dsp

– API for accessing playback and capture controls

– The main capture and playback device in oss system

» Capture function is also implemented by read data from the device
(Mic-Reading from /dev/dsp)

» Playback function is implemented by writing data to such device
(Speaker-Writing to /dev/dsp)

– Only one application can open /dev/dsp at time

– Available ioctl settings: sample size and sample rate, number of read or
write channels (1: mono, 2: stereo).

– Writing to the device accesses the D/A converter to produce sound.
Reading the device activates the A/D converter for sound recording and
analysis.

Open Sound System, OSS

Host$ cat /dev/dsp > mmn - recodeing
Host$ cat /mmn > /dev/dsp - playback

33

• OSS Driver Device

• /dev/mixer

– C API for accessing mixer controls: mainly setting channel volume (left,
right or mono), and selecting recording sources.

– allow user configure sound card feature, like speaker, mic and midi via
ioctl command

– Applications don't have to open /dev/mixer to issue these ioctls. They
can also use /dev/dsp if it is already open.

– Settings are kept even after the applications exit.

• /dev/audio

– Same as /dev/dsp, but it is only for Sun compatible digital audio(.au
fileformat)

Open Sound System, OSS

34

• Example for Advance Audio Programming Flow

1. Include OSS API <soundcard.h>

2. Open a device file, get the file descriptor

– Open /dev/mixer

– Open /dev/dsp

3. Use ioctl function to control the device property

– Set parameters

– Set mixer

4. Read from device, write to device or do nothing

5. Close the device

Open Sound System, OSS

35

• Playback Programming

Open Sound System, OSS

#include <sys/ioctl.h>
#include <sys/soundcard.h>

int main() {
 int audio_fd;
 int music_fd = open(argv[1],O_RDONLY, 0);
 if ((audio_fd = open("/dev/dsp",omode,0)) == -1) {
 perror("/dev/dsp");
 exit(1);
 }

 int format = AFMT_S16_NE;
 ioctl(audio_fd,SNDCTL_DSP_SETFMT, &format);
 int channels = 2;
 ioctl(audio_fd, SNDCTL_DSP_CHANNELS, & channels);
 int speed = 44100;
 ioctl(audio_fd, SNDCTL_DSP_SPEED, &speed);
 while ((count = read(music_fd, applicbuf, 2048)) > 0) {
 write(audio_fd, applicbuf, count);
 }

 close(audio_fd)
}

Include soundcard.h

Open Device

Set Parameter
(speed, format, channel)

Close Device

Read and Write the device

36

• Channel Number (mono, stereo, multiple)

• Methods for handle multiple channel (depends on hardware) :

1. Interleaved multi channel audio : only one device file，record or play the

N channels samples one after one for each time slot.

2. Multiple audio device method : several device files : one file for one

channel sample (/dev/dspM for channel 1, /dev/dspM+1 for channel 2 ….)

• Audio Format
• Actually most applications need to support just a 16 bit data format.

OSS can convert it to any other format if necessary

Open Sound System, OSS

Name Description

AFMT_U8 8 bit unsigned sample format
AFMT_S8 8 bit signed sample format
AFMT_S16_BE 16 bit signed big endian sample forma
AFMT_S16_LE 16 bit little endian sample format
AFMT_A_LAW A-Law encoded logarithmic sample format
AFMT_MU_LAW encoded logarithmic sample format

Supported audio formats

37

• Sample rate

• Telephone Quality：8 KHz or 11.025 KHz

• Radio Quality：22.05 KHz

• CD Quality：44.1KHz

• DVD Quality：98KHz

• It's very important that applications accept up to 10% differences

between the requested and the granted sampling rates. OSS tries to

return the real sampling rate as precisely as possible.

• For example if the requested rate is 22050 Hz the granted value may be
something like 22024 Hz. This means just that the nearest rate supported by
the the device is 22024 instead of 22050. It's better to tolerate this error
instead of refusing to work with the device.

Open Sound System, OSS

38

• Ioctl calls available on audio devices

command Description

SNDCTL_DSP_CHANNELS Set the number of audio channels

SNDCTL_DSP_SETFMT Select the sample format

SNDCTL_DSP_SPEED Set the sampling rate

SNDCTL_DSP_GETPLAYVOL Returns the current audio playback volume

SNDCTL_DSP_GETFMTS
Returns a list of natively supported sample
formats

SNDCTL_DSP_SILENCE Clears the playback buffer with silence

SNDCTL_DSP_GETOPEAKS The peak levels for all playback channels

SNDCTL_DSP_GETERROR Returns audio device error information

Open Sound System, OSS

39

• Playback Programming

Open Sound System, OSS

#include <sys/ioctl.h>
#include <sys/soundcard.h>

int main() {

int mixer_fd;
if ((mixer_fd = open(“/dev/mixer”,O_RDONLY,0)) == -1) {
 error(“mixer”);
 exit(1);
 }

int vol = 0x3f3f;
ioctl(mixer_fd,
MIXER_WRITE(SOUND_MIXER_VOLUME),&vol);

close(mixer_fd);
return 0;

}

Include soundcard.h

Open Device

Set Parameter
(speed, format, channel)

Close Device

40

command Description

SOUND_MIXER_VOLU
ME

Master output level (headphone/line out volume)

SOUND_MIXER_TREBLE Treble level of all of the output channels

SOUND_MIXER_BASS Bass level of all of the output channels

SOUND_MIXER_SYNTH Volume of the synthesizer input (FM, wavetable). In
some cases may be
connected to other inputs too.

SOUND_MIXER_PCM Output level for the audio (Codec, PCM, ADC) device
(/dev/dsp and
/dev/audio)

SOUND_MIXER_SPEAK
ER

Output volume for the PC speaker signals. Works
only if the speaker
output is connected directly to the sound card

• Ioctl calls Mixer channel

Open Sound System, OSS

41

• Each device has a volume setting, which can be read/written using

the following macros. The setting ranges from 0 to 100 and is

scaled by the driver. In the case of stereo devices, the least

significant byte is the volume for the left channel, the next byte is the

volume for the right channel

• macro MIXER_READ() returns IOCTL command to read setting

• macro MIXER_WRITE(<--->) returns IOCTL command to write

setting

 ioctl(fd, MIXER_READ(SOUND_MIXER_VOLUME), &var)

Open Sound System, OSS

42

• OSS Advantages (users)

• Per-application volume control.

• Some legacy cards are supported better.

• Initial response time in sound applications is usually better.

• Better support for applications that use the OSS API. Many
applications still use this API, and do not require an
emulation layer like ALSA uses.

• OSS Advantages (developers)

• Cleaner and easier to use API, and better
API documentation.

• Support for drivers in userspace.

• Cross-platform. OSS runs on BSDs and Solaris.

Open Sound System, OSS

43

http://manuals.opensound.com/developer

• Useful References

• O'Reilly's Multimedia Guide

– http://www.oreilly.de/catalog/multilinux/

• Developing applications for Open Sound System version 4.1

– http://manuals.opensound.com/developer/

Open Sound System, OSS

Linux Multimedia Guide OSS Official Website – 4Front

44

http://www.oreilly.de/catalog/multilinux/
http://manuals.opensound.com/developer/
http://www.oreilly.de/catalog/multilinux/

•What is Multimedia
•Codec and Multimedia Format
•Android Multimedia System Introduction

•Sound Subsystem in Kernel
•Alternate Sound Drivers
•Main Linux Audio Driver

•Open Sound System, OSS
•Advanced Linux Sound Architecture, ALSA

•Related Embedded Player
•Lab

45
45

• Why will be replaced OSS by ALSA?
• Better support for USB audio devices. With OSS output is experimental,

input is not implemented.

• Support for Bluetooth audio devices.

• Support for AC'97 and HDAudio dial-up soft-modems such as Si3055.

• Better support for MIDI devices. With OSS you'll have to use a software

synthesizer such as Timidity or Fluidsynth.

• ALSA can handle multiple source of audio

• With support new sound cards, programs for multi-track recording and

playback for musicians

• ALSA provides various ways to support programs that want to use OSS

• Provide flexible ALSA library in user space

• OSS Emulation Support

Advanced Linux Sound Architecture, ALSA

46

• ALSA Feature
• Efficient support for different types of audio interfaces, from consumer

sound cards to multichannel audio interfaces

• Fully modularized driver

• SMP and thread-safe design

• User space library (alsa-lib) to simplify application programming and

provide higher level functionality

• Support for the older Open Sound System (OSS) API, providing binary

compatibility for most OSS programs.

Advanced Linux Sound Architecture, ALSA

http://www.alsa-project.org/main/index.php/Main_Page

47

• ALSA Feature
• Efficient support for different types of audio interfaces, from consumer

• OSS emulation: fully supports applications originally created for OSS

(still accessing /dev/sound, /dev/dsp or /dev/mixer).

• Device files in /dev/snd/.You don't need to use them directly. Use

alsalib instead.

• ALSA proc interface – located at /proc
• ALSA uses for device information and for some control purposes.

– /proc/asound/oss/

– /proc/asound/version

– /proc/asound/devices

one control channel
two PCM playback devices (DAC's)
two PCM capture devices (ADC's)
a MIDI sequencer
a timer

Advanced Linux Sound Architecture, ALSA

mad@mad-desktop:~/$ cat /proc/asound/devices
 2: : timer
 3: : sequencer
 4: [0- 2]: digital audio capture
 5: [0- 1]: digital audio playback
 6: [0- 1]: digital audio capture
 7: [0- 0]: digital audio playback
 8: [0- 0]: digital audio capture
 9: [0] : control

Reference：http://alsa.opensrc.org/Proc_asound_documentation#The_.2Fproc.2Fasound.2Foss.2F_directory

48

http://alsa.opensrc.org/Proc_asound_documentation
http://alsa.opensrc.org/Proc_asound_documentation
http://alsa.opensrc.org/Proc_asound_documentation

• ALSA Device
• Device files in /dev/snd/.You don't need to use them directly. Use

alsalib instead.

• how to create ALSA device

• Use cat /proc/asound/devices

Advanced Linux Sound Architecture, ALSA

mad@mad-desktop:~/$ cat /proc/asound/devices
 2: : timer
 3: : sequencer
 4: [0- 2]: digital audio capture
 5: [0- 1]: digital audio playback
 6: [0- 1]: digital audio capture
 7: [0- 0]: digital audio playback
 8: [0- 0]: digital audio capture
 9: [0] : control

mknod /dev/snd/timer c 116 2
mknod /dev/snd/sequencer c 116 3

mknod /dev/snd/pcmC0D2c c 116 4
mknod /dev/snd/pcmC0D1p c 116 5

mknod /dev/snd/pcmC0D1c c 116 6
mknod /dev/snd/pcmC0D0p c 116 7

mknod /dev/snd/pcmC0D0c c 116 8
mknod /dev/snd/controlC0 c 116 9

Minor
number

Card
number

Device
number

C：Card
0 ：Card number
D ：Device
0/1 ：Device number
P/C ：playback/control

49

ALSA Application

ALSA Library API

Hardware Access

OSS API

OSS Userspace
Emulation
(libaoss)

ALSA Kernel API
(PCM、MIDI、Control、Sequence)

ALSA Kernel Driver

OSS API

OSS Kernel Driver

OSS Application OSS Application

Audio Hardware

User Space

Kernel Space

Hardware

ALSA-Lib

Advanced Linux Sound Architecture, ALSA

50

• ALSA Related Resource

• ALSA Drivers - Kernel drivers

• ALSA Lib - Userspace library

• ALSA Utility - Utilities aplay,arecord,amixer etc

• ALSA Tools - Tools

• ALSA firmware - Firmware for cards that require it

• ALSA Plugin - Additional library plugins Eg.jack, pulse, maemo ..

• ALSA OSS - OSS compatibility library

Advanced Linux Sound Architecture, ALSA

51

• ALSA Driver

• Universal control API

– New enhanced and flexible API for applications

– Support for unlimited number of controls

– support for mixer events

• Let two or more applications to be synchronized

– Digital audio (PCM)

– Support for all types of hardware

– Full real duplex support

– Stream start synchronization

Advanced Linux Sound Architecture, ALSA

52

• ALSA Driver

• Sequencer

– support multiple event queues

• Hardware dependent API

– support hw specific things

• OSS/Free kernel emulation

– Mixer

– PCM (/dev/dsp) compatibility

• Useful references

• Write an ALSA driver

– http://www.alsa-project.org/~tiwai/writing-an-alsa-driver/

• AlSA Driver API
– http://www.alsa-project.org/~tiwai/alsa-driver-api/

Advanced Linux Sound Architecture, ALSA

53

http://www.alsa-project.org/~tiwai/writing-an-alsa-driver/
http://www.alsa-project.org/~tiwai/writing-an-alsa-driver/
http://www.alsa-project.org/~tiwai/writing-an-alsa-driver/
http://www.alsa-project.org/~tiwai/writing-an-alsa-driver/
http://www.alsa-project.org/~tiwai/writing-an-alsa-driver/
http://www.alsa-project.org/~tiwai/writing-an-alsa-driver/
http://www.alsa-project.org/~tiwai/writing-an-alsa-driver/
http://www.alsa-project.org/~tiwai/writing-an-alsa-driver/
http://www.alsa-project.org/~tiwai/writing-an-alsa-driver/
http://www.alsa-project.org/~tiwai/alsa-driver-api/
http://www.alsa-project.org/~tiwai/alsa-driver-api/
http://www.alsa-project.org/~tiwai/alsa-driver-api/
http://www.alsa-project.org/~tiwai/alsa-driver-api/
http://www.alsa-project.org/~tiwai/alsa-driver-api/
http://www.alsa-project.org/~tiwai/alsa-driver-api/
http://www.alsa-project.org/~tiwai/alsa-driver-api/

• ALSA Library – Alsa-oss library

• Alsa-oss is a package that uses a different means of providing

OSS emulation

• One of the aims of ALSA is to provide full OSS compatibility for

OSS applications

• ALSA has two alternative methods of emulating the old OSS

sound driver

1. load ALSA's kernel OSSEmulation modules: snd-pcm-

oss, snd-mixer-oss, and snd-seq-oss

2. use the aoss script included in the alsa-oss package

Advanced Linux Sound Architecture, ALSA

54

• ALSA Library

• The ALSA library API is the interface to the ALSA drivers

• Developers need to use the functions in this API to achieve

native ALSA support for their applications

• The currently designed interfaces are listed below

1. Information Interface (/proc/asound)

2. Control Interface (/dev/snd/controlCX)

3. Mixer Interface (/dev/snd/mixerCXDX)

4. PCM Interface (/dev/snd/pcmCXDX)

5. Raw MIDI Interface (/dev/snd/midiCXDX)

6. Sequencer Interface (/dev/snd/seq)

7. Timer Interface (/dev/snd/timer)

• Useful references

– http://www.alsa-project.org/alsa-doc/alsa-lib/

Advanced Linux Sound Architecture, ALSA

55

http://www.alsa-project.org/alsa-doc/alsa-lib/
http://www.alsa-project.org/alsa-doc/alsa-lib/
http://www.alsa-project.org/alsa-doc/alsa-lib/
http://www.alsa-project.org/alsa-doc/alsa-lib/
http://www.alsa-project.org/alsa-doc/alsa-lib/
http://www.alsa-project.org/alsa-doc/alsa-lib/
http://www.alsa-project.org/alsa-doc/alsa-lib/

• ALSA Library

• Control interface

– General-purpose facility for managing registers of sound cards and

querying the available devices

• High level control interface

– The high-level primitive controls API

• Mixer interface

– controls the devices on sound cards that route signals and control

volume levels

• PCM (digital audio) interface

– The interface for managing digital audio capture and playback , as

it is the one most commonly used for digital audio applications

Advanced Linux Sound Architecture, ALSA

56

• ALSA Library

• PCM External Plugin SDK

– The external PCM plugin SDK

• External Control Plugin SDK

– The external control plugin SDK

• RawMidi interface

– supports MIDI (Musical Instrument Digital Interface), a standard for

electronic musical instruments

• Timer interface

– Provides access to timing hardware on sound cards for

synchronizing sound events

• Sequencer interface

– A higher-level interface for MIDI programming and sound synthesis

than the raw MIDI interface

Advanced Linux Sound Architecture, ALSA

57

• ALSA Library programming flow

Advanced Linux Sound Architecture, ALSA

58

More detail in LAB time

• ALSA Utility

• Alsaconf

– The ALSA driver configurator script

• Alsactl
– An utility for soundcard settings management

• Aplay/Arecord

– An utility for the playback / capture of .wav,.voc,.au files

• Amixer

• A command line mixe

• Alsamixer

• A ncurses mixer

• Amidi

• A utility to send/receive sysex dumps or other MIDI data

Advanced Linux Sound Architecture, ALSA

59

• ALSA Utility

• amixer – set volume control, microphone input level(use

command line)

Advanced Linux Sound Architecture, ALSA

Host$: amixer --help
Usage: amixer <options> [command]
Available options:
-c,--card N select the card
-D,--device N select the device, default 'default‘
-v,--version print version of this program

Sequentially
controls show all controls for given card
contents show contents of all controls for given card
cset cID P set control contents for one control
cget cID get control contents for one control

60

• ALSA Utility

• amixer- See all control interface supported by driver

Advanced Linux Sound Architecture, ALSA

Host$: amixer controls

numid=2,iface=MIXER,name='Master Switch'
numid=1,iface=MIXER,name='Master Volume'
numid=7,iface=MIXER,name='PCM Mode Switch'
numid=6,iface=MIXER,name='PCM Switch'
numid=5,iface=MIXER,name='PCM Volume
……
…..
Host$ amixer cget numid=5,iface=MIXER,name='PCM Volume'
numid=5,iface=MIXER,name='PCM Volume'
; type=INTEGER,access=rw---R--,values=2,min=0,max=27,step=0
: values=27,27
| dBscale-min=-40.50dB,step=1.50dB,mute=0

Host$ amixer cset numid=5,iface=MIXER,name='PCM Volume' 25
numid=5,iface=MIXER,name='PCM Volume'
; type=INTEGER,access=rw---R--,values=2,min=0,max=27,step=0
: values=25,25
| dBscale-min=-40.50dB,step=1.50dB,mute=0

61

• ALSA Utility

• alsamixer

Advanced Linux Sound Architecture, ALSA

62

• ASoC (Alsa System on Chip)

• ASoC subsystem is proposed by Wolfson, support portable

embedded system

• Before ASoC proposed, linux kernel support SoC audio but with

some limitation

• Codec driver is CPU dependent

• No inform standard for audio event

• Incomplete power management

Advanced Linux Sound Architecture, ALSA

63

• ASoC Design Feature

• Codec independence : different platform use same code driver

• Simple interface (AC97 / I2S / PCM) between CPU and codec

• DAPM (Dynamic Audio Power Management)

• Driver layer

– Codec Driver

– Platform Driver

– Machine Driver

• DAI (digital/audio interface)

Advanced Linux Sound Architecture, ALSA

64

• Machine Driver

• The ASoC machine (or board) driver is the code that tights

together the platform and codec drivers

• Machine driver contains codec and platform specific code

• It registers the audio subsystem with the kernel as a platform

device

• Codec Driver

• Codec driver is generic and hardware independent code

• Configures the audio codec to provide audio capture/playback

mechanism

• It should contain no code that is specific to the target platform or

machine

Advanced Linux Sound Architecture, ALSA

65

• Platform Driver

• The platform driver can be divided into audio DMA and SoC

Digital Audio Interface (DAI) configuration and control

• The platform driver only targets the SoC CPU and must have no

board specific code

Advanced Linux Sound Architecture, ALSA

66

• ALSA SoC Architecture for OMAP3530

• Supports TWL4030 audio codec in ALSA SoC framework.

• Multiple sample rate support (8 KHz, 11.025 KHz, 12 KHz, 16

KHz, 22.05 KHz, 24 KHz, 32 KHz,

• 44.1 KHz and 48 KHz) for both capture and playback.

• Supports audio in both mono and stereo modes.

• Supports simultaneous playback and record (full-duplex mode).

• Start, stop, pause and resume feature.

• Supports mixer interface for TWL4030 audio codec

Advanced Linux Sound Architecture, ALSA

67

Advanced Linux Sound Architecture, ALSA
ALSA Application

ALSA Library

pcm control

ALSA Kernel API

ALSA SoC Core

Codec
Driver

Machine
Driver

Platform
Driver

Control interface
(I2C)

System DMA
Data Transfer

Interface(McBSP)

TWL4030 Codec

Audio Codec
(TWL4030)

McBSP Driver

ALSA Application ALSA Application

Hardware

Kernel Space

User Space

OMAP 35x

ALSA SoC Architecture

68

•What is Multimedia
•Codec and Multimedia Format
•Android Multimedia System Introduction

•Sound Subsystem in Kernel
•Alternate Sound Drivers
•Main Linux Audio Driver

•Open Sound System, OSS
•Advanced Linux Sound Architecture, ALSA

•Related Embedded Player
•Lab

69
69

• GStreamer is a pipeline-based multimedia

framework written in the C programming language

• Each element is provided by a plug-in

• TI support Dvsdk plug-in component for Gstreamer

Embedded Player - Gstreamer

70

• MPlayer is a free and open source media player

• MPlayer supports various media formats and also save

all streamed content to a file

• High Portable flexibility

Embedded Player - MPlayer

71

•What is Multimedia
•Codec and Multimedia Format
•Android Multimedia System Introduction

•Sound Subsystem in Kernel
•Alternate Sound Drivers
•Main Linux Audio Driver

•Open Sound System, OSS
•Advanced Linux Sound Architecture, ALSA

•Related Embedded Player
•Lab

72
72

• How to use ALSA API

• ALSA API Programming Flow

1. open playback or record device

2. set parameters’s structure

3. write parameters structure to driver

4. Two function
1. Audio Record

2. Audio Playback

LAB

73

• ALSA API Programming Flow

LAB

Audio.c
open_device(snd_pcm_open)

set_parameters(snd_pcm_hw_params_setxx
 snd_pcm_hw_paras)

recoder player

fopen(file) fopen(file)

fwrite(file) fread(file)
snd_pcm_readi snd_pcm_writei

fclose(file) fclose(file) MIC Speaker

74

• ALSA Library API

• snd_pcm_open ()

– Open audio device

• snd_pcm_hw_params_set_XX ()

– Set parameter’s structure

• snd_pcm_hw_params ()

– write parameters structure to driver

• snd_pcm_readi ()

– read data from device

• snd_pcm_writei ()

– write buffer to device

LAB

75

• ALSA Library API

• Recording Stage

– Use snd_pcm_readi() to read data from device

– Use fwrite() to write buffer to file

• Playback Stage

– Use fread() to read data from file to buffer

– Use snd_pcm_writei() to write buffer to device

LAB

76

• ALSA Library API

• int snd_pcm_open(snd_pcm_t** pcmp, const char * name,

snd_pcm_stream_t stream, int mode)

• Parameters:

– pcmp Returned PCM handle

» &handle[??]

– name ASCII identifier of the PCM handle

» We choose “default”

– stream Wanted stream

» SND_PCM_STREAM_PLAYBACK

» SND_PCM_STREAM_CAPTURE

– mode Open mode

» 0

LAB

77

• ALSA Library API

• snd_pcm_hw_params_set_access

• snd_pcm_hw_params_set_format

• snd_pcm_hw_params_set_channels

• snd_pcm_hw_params_set_rate_near

LAB

78

• ALSA Library API

• int snd_pcm_hw_params_set_access(snd_pcm_t * pcm,

snd_pcm_hw_params_t * params,snd_pcm_access_t access)

• Restrict a configuration space to contain only one access type

• Parameters:

– pcm PCM handle

» handle[??]

– params Configuration space

» We fill declared snd_snd_pcm_hw_params_t object

– access access type

» SND_PCM_ACCESS_RW_INTERLEAVED

LAB

79

• ALSA Library API

• int snd_pcm_hw_params_set_format(snd_pcm_t * pcm,

snd_pcm_hw_params_t * params, snd_pcm_format_t format)

• Restrict a configuration space to contain only one format

• Parameters:

– pcm PCM handle

» handle[??]

– params Configuration space

» We fill declared snd_snd_pcm_hw_params_t object

– format format

» SND_PCM_FORMAT_S16_LE

LAB

80

• ALSA Library API

• int snd_pcm_hw_params_set_channels(snd_pcm_t * pcm,

snd_pcm_hw_params_t * params, unsigned int val)

• Restrict a configuration space to contain only one channels

count

• Parameters:

– pcm PCM handle

» handle[??]

– params Configuration space

» We fill declared snd_snd_pcm_hw_params_t object

– val channels count

» 2

LAB

81

• ALSA Library API

• int snd_pcm_hw_params_set_rate_near(snd_pcm_t * pcm,

snd_pcm_hw_params_t * params, unsigned int * val,int * dir)

• Restrict a configuration space to have rate nearest to a target

• Parameters:

– pcm PCM handle

» handle[??]

– params Configuration space

» We fill declared snd_snd_pcm_hw_params_t object

– val approximate target rate / returned approximate set rate

» val pointer

– dir Sub unit direction

» dir pointer

LAB

82

• ALSA Library API

• int snd_pcm_hw_params(snd_pcm_t * pcm,

snd_pcm_hw_params_t * params)

• Install one PCM hardware configuration chosen from a

configuration space

– pcm PCM handle

» handle[??]

– Params Configuration space definition container

» We fill declared snd_snd_pcm_hw_params_t object

LAB

83

• ALSA Library API

• snd_pcm_sframes_t snd_pcm_readi(snd_pcm_t * pcm, void

* buffer, snd_pcm_uframes_t size)

• Read interleaved frames from a PCM

• Parameters:

– pcm PCM handle

» handle[??]

– buffer frames containing buffer

» data buffer

– size frames to be read

» Declared snd_pcm_uframes_t object

LAB

84

• ALSA Library API

• snd_pcm_sframes_t snd_pcm_writei(snd_pcm_t * pcm,

const void * buffer, snd_pcm_uframes_t size)

• Write interleaved frames to a PCM

• Parameters:

– pcm PCM handle

» handle[??]

– buffer frames containing buffer

» data buffer

– size frames to be written

» Declared snd_pcm_uframes_t object

LAB

85

• Audio Driver LAB

• Use ALSA APIs to Implement following functions

• Recoder

• Capture Audio Data from Mic

• Write to xxx.raw

• Player

• Read from xxx.raw

• Push data to playback device

LAB

86

• Audio Driver LAB program tip

• Revise audio/audio_playback.c

• Revise Rule.make

– KERNEL_DIR (kernel source path)

– LIB_DIR (External Library Dir)

– LIB_INC (External Headers Dir)

• Fill the blank with right code

• make

• copy audio_playback binary file to target file system

• Try & debug

LAB

87

• Appendix - PCM Main APIs-States

• The ALSA PCM API design uses the states to determine the

communication phase between application and library

– SND_PCM_STATE_OPEN

– SND_PCM_STATE_SETUP

– SND_PCM_STATE_PREPARE

– SND_PCM_STATE_RUNNING

– SND_PCM_STATE_PAUSED

– SND_PCM_STATE_DISCONNECTED

LAB

88

• Appendix - PCM Main APIs-States

• SND_PCM_STATE_OPEN

– the PCM device is in the open state. After

the snd_pcm_open() open call, the device is in this state. Also,

when snd_pcm_hw_params()

• SND_PCM_STATE_SETUP

– he PCM device has accepted communication parameters and it is

waiting for snd_pcm_prepare()

• SND_PCM_STATE_PREPARE

– The PCM device is prepared for operation. Application can

use snd_pcm_start() call, write or read data to start the operation.

• SND_PCM_STATE_RUNNING

– The PCM device has been started and is running. It processes the

samples. The stream can be stopped using

the snd_pcm_drop() or snd_pcm_drain() calls

LAB

89

• Appendix - PCM Main APIs-States

• SND_PCM_STATE_PAUSED

– The device is in this state when application called

the snd_pcm_pause() function until the pause is released

• SND_PCM_STATE_DISCONNECTED

– The device is physicaly disconnected. It does not accept any I/O

calls in this state.

LAB

90

