
Chap5 - 0© by Tien-Fu Chen@CCU

Chapter 5

Tien-Fu Chen

National Chung Cheng Univ.

Computer Architectures

Chap5 - 1© by Tien-Fu Chen@CCU

Topics in Memory Hierachy
! Memory Hierachy

Features: temporal & spatial locality
Common: Faster -> more expensive -> smaller

! Cache

" organization
" fetch algorithm
" replacement
" write policy

! Virtual memory
" paged memory paged segment
" segment memory segmented page
" TLB
" protection

! Main memory
" interleaved memory
" access mode

! Multiprocessor cache
" coherence protocols
" consistency models

virtual addr space

multi-level cache

unified / split cache

multiprocessor caches

Chap5 - 2© by Tien-Fu Chen@CCU

Four Questions about Caches
Q1: Where can a block be placed in the upper level? (Block placement)

" Fully associative, direct mapped, 2-way set associative

" index = (block num) % (# of set)

Q2: How is a block found if it is in the upper level? (Block identification)

" address = tag + index + block offset

Q3: Which block should be replaced on a miss? (Block replacement)

" Random (large associativities)

" LRU (smaller associativities)

Q4: What happens on a write? (Write strategy)

" Write through: written to both cache and mem

" Write back: written only to the cache. The modified cache block is written to
main memory only when it is replaced.

Chap5 - 3© by Tien-Fu Chen@CCU

Terms in Memory Hierarchy

! Block (page, line)

Units transferred between , fixed length

! Hit/Miss

! Miss Ratio

! Hit time

time to access upper level

! Miss penalty

access time of lower level
+ replace time + transfer time

! average (effective) access time

miss ratio m
of hits

of misses
()

#

#
=

t t miss ratio tavg hit miss= + ×

CPI CPI

mem ref

instruns
miss ratio C

w cache ideal

miss

/ = +

× ×

Chap5 - 4© by Tien-Fu Chen@CCU

Decisions on Caches
! Organization (Placement)

" Direct-mapped
" Fully-associative
" Set-associative

! Fetch Algorithm
" fetch on miss
" non-blocking

! Replacement Algorithm
" LRU, random, FIFO

! Write policy
" Write-back
" Write-through

! Cache Parameters

" Cache size (C)

" Block (line) size (b)

sector caches

multi-level caches

fetch by passing

prefetch

set size (s)

Associativity (a)

C of set s a b= × ×(#)

Chap5 - 5© by Tien-Fu Chen@CCU

Strategies for Line Replacement
! Fetching a line

" access and fill - starts on line boundary
" fetch bypass (wrap-around load)

access faulted word first and load the remainder line on following
" non-blocking cache

processor continues execution when exection not depend on
" prefetching

! Line Replacements

" LRU: Least-recently used
optimize based on temporal locality
a counter associated with each line
modify counter on each read/write

" FIFO:
longest line is to be replaced

" Random:
select a vitctim at random

! Victim Caches
a fully-assoicative buffer holding replaced lines

Chap5 - 6© by Tien-Fu Chen@CCU

Write Policies

! write back (copy back)

cached block is updated to memory only when replaced
- dirty bits used to avoid update clean blocks
- Less traffic for larger caches

! write through

block written both to cache and memory
adv: retain a consistent copy between cache and mem
disadv: high memory bandwidth required

! on a write miss

– write allocate

– No write allocate

! Write Buffers
allow reads to proceed without stalling

P

cache

write buffer

M

������� ���	 ����	
��	� ���� ����� �= × ×

Traffic inst fract writes/ _=

Chap5 - 7© by Tien-Fu Chen@CCU

!Split Data / Instruction caches

Separate Unified

1.bandwidth increased 1.less costly

2.take spactial locality 2. overall miss ratio increase

form instr. cache 3.self-modifying code and

3. no interlock on execute are possible

simultaneous requests

!Cache Performance
CPU time = IC x (CPI execution + Mem accesses per instruction x Miss rate x Miss

penalty) x Clock cycle time

Misses per instruction = Memory accesses per instruction x Miss rate

CPU time = IC x (CPI execution + Misses per instruction x Miss penalty) x Clock
cycle time

Other Types of Caches

Chap5 - 8© by Tien-Fu Chen@CCU

Improving Cache Performance
! Cache Size

! Effects of parameters
" Cache size

larger cache exploit better temporal locality
large access time

" Block size
larger block size has better spatial locality
cause unused data transferred & replacement

" Associativity
larger associaivity get lower miss ratio
high cost

! Average memory-access time =
Hit time + Miss rate x Miss penalty (ns or clocks)

! Improve performance by:
1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

sizeblockityassociativsetsetofsizecache ××= #

Chap5 - 9© by Tien-Fu Chen@CCU

Sources of cache miss
!3C/4C

" Compulsory :
first access to a block
cold-start miss, first reference miss

" Capacity :
due to blocks being discarded, limited by size

" Conflict :
due to conflicts in set-associative caches

" Coherence :
Misses because blocks are invalidated due to references by other processors

! Miss rate reduction

" I-1: larger block size
$ take advantage of spatial locality
$ will increase miss penalty

" I-2: higher associativity => increased hit time
" I-3: victim cache

$ A small fully associative cache
$ contains blocks that are replaced on a miss
$ useful for small and direct-mapped caches

Chap5 - 10© by Tien-Fu Chen@CCU

Miss Rate Reduction (Cont)
! I-4: Pseudo-associative caches

" proceed like direct-mapped
" on a miss, check another entry in set
" fast hit time and slow hit time
" can reduce miss rate

! I-5: Prefetching
" Prefetch instructions
" hardware based stream buffer
" compiler-controlled prefetch

$ Register prefetch
$ Cache prefetch

" Issues
$ faulting vs. non faulting (nonbinding)
$ blocking vs nonblocking (lockup-free)

! Prefetching relies on extra memory bandwidth that can be used without penalty

Chap5 - 11© by Tien-Fu Chen@CCU

More miss rate reduction (prefetching)
! Hardware prefetching of instructions

" Alpha 21064 fetches 2 blocks on a miss
" Extra block placed in stream buffer
" On miss check stream buffer
" Works with data blocks too

! Data prefetching

" Preload data into register (HP PA-RISC loads)
" Cache Prefetch: load into cache (MIPS IV, PowerPC, SPARC v. 9)
" Special prefetching instructions cannot cause faults; a form of speculative

execution
" Issuing Prefetch Instructions takes time
Is cost of prefetch issues < savings in reduced misses?

! Prefetching policy
" OBL (one block lookahead)
" always prefetch
" prefetch on miss
" tagged prefetch
" stride prefetching

Chap5 - 12© by Tien-Fu Chen@CCU

More miss rate reduction (compiler optimizations)

! Instructions

" Reorder procedures in memory so as to reduce misses
" Profiling to look at conflicts
" McFarling [1989] reduced caches misses by 75% on 8KB direct mapped cache

with 4 byte blocks

! I-7: Compiler optimization on Data

" Merging Arrays: improve spatial locality by single array of compound elements
vs. 2 arrays

" Loop Interchange: change nesting of loops to access data in order stored in
memory

" Loop Fusion: Combine 2 independent loops that have same looping and some
variables overlap

" Blocking: Improve temporal locality by accessing �locks?of data repeatedly vs.
going down whole columns or rows

Chap5 - 13© by Tien-Fu Chen@CCU

Loop Interchange Example

/* Before */

for (k = 0; k < 100; k = k+1)

for (j = 0; j < 100; j = j+1)

for (i = 0; i < 5000; i = i+1)

x[i][j] = 2 * x[i][j];

/* After */

for (k = 0; k < 100; k = k+1)

for (i = 0; i < 5000; i = i+1)

for (j = 0; j < 100; j = j+1)

x[i][j] = 2 * x[i][j];

Sequential accesses instead of striding through memory every 100
words; improved spatial locality

Chap5 - 14© by Tien-Fu Chen@CCU

Loop Fusion Example
/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

d[i][j] = a[i][j] + c[i][j];

/* After */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{ a[i][j] = 1/b[i][j] * c[i][j];

d[i][j] = a[i][j] + c[i][j];}

2 misses per access to a & c vs. one miss per access; improve
spatial locality

Chap5 - 15© by Tien-Fu Chen@CCU

Blocking Example
/* Before */

for (i = 0; i < N; i = i+1)

for (j = 0; j < N; j = j+1)

{r = 0;

for (k = 0; k < N; k = k+1){

r = r + y[i][k]*z[k][j];};

x[i][j] = r;

};

! Two Inner Loops:

" Read all NxN elements of z[]
" Read N elements of 1 row of y[] repeatedly
" Write N elements of 1 row of x[]

! Capacity Misses a function of N & Cache Size:

" 2N3 + N2 => (assuming no conflict; otherwise …)

! Idea: compute on BxB submatrix that fits

Chap5 - 16© by Tien-Fu Chen@CCU

Blocking Example
/* After */

for (jj = 0; jj < N; jj = jj+B)

for (kk = 0; kk < N; kk = kk+B)

for (i = 0; i < N; i = i+1)

for (j = jj; j < min(jj+B-1,N); j = j+1)

{r = 0;

for (k = kk; k < min(kk+B-1,N); k = k+1) {

r = r + y[i][k]*z[k][j];};

x[i][j] = x[i][j] + r;

};

!B called Blocking Factor

!Capacity Misses from 2N3 + N2 to N3/B+2N2

!Conflict Misses Too?

Chap5 - 17© by Tien-Fu Chen@CCU

Reducing Cache Miss Penalty
! II-1: Giving priority to read misses over writes

" cost of writes reduced by a write buffer

! II-2: Sub-block Placement (Do not have to load full block on a miss)

access unit- subblock
tag unit - a full line
+reduce tag overhead
+wrapped fetch

! II-3: Do not wait for full block to be loaded before restarting CPU

" Early restart
" critical word first - wrapped fetch/

requested word first
" benefit from large block size

! II-4: Nonblocking caches (lockup-free caches)

" allow cache to continue to supply data during a miss
" may cause out-of-order accesses

Chap5 - 18© by Tien-Fu Chen@CCU

Multi-level Caches
! Why multi-level caches?

Need larger caches to reduce frequency of most costly misses =>
reduce the cost of misses with different level of caches

! II-5: Two-level Caches

" motivation
$ reduce average access time by
$ large cache size block size
$ cache associativity
$ hierarchical sharing
$ shield processors from coherence traffic

" Multi level Inclusion Property
L2 always contains superset of data in L1

16 x C1 : 16 K, direct map (A = 1) B1 = 16

C2 : 256K, if B2=B1 => A2=16

if B2=4B1 => A2=64

A A
B

B

S

S
i i

i

i

i

i
+

+

+
≥ ∑ ×1

1

1
max(,)

Chap5 - 19© by Tien-Fu Chen@CCU

Reducing hit time

! III-1: Fast Hit times via
Small and Simple Caches
" Direct Mapped, on chip

! III-2: Virtual address
Cache
" avoid address translation

during indexing the cache

! III-3: Pipelined Writes
" Pipeline Tag Check and

Update Cache as separate
stages; current write tag
check & previous write
cache update

" Only Write in the pipeline;
empty during a miss

Chap5 - 20© by Tien-Fu Chen@CCU

Virtual-Addressed Cache
! Motivation : reduce cache hit time

! Approach :

" address translate partially in parallelism
=> limited by page page

" virtual caches
! Problems

– address translation require if miss
– synonym (alias)

sol :
» Inverted Page Table (IBM 801)
» reverse translation table

2 - level cache :
» large addr space

(64 bit)
– context switching

» add PID to tag
» flush

– I/O device
– cache coherence in MP

P

V - C

P - Cache

M

Chap5 - 21© by Tien-Fu Chen@CCU

Fast hits by Avoiding Address Translation

CPU

TB

$

MEM

VA

PA

PA

Conventional
Organization

CPU

$

TB

MEM

VA

VA

PA

Virtually Addressed Cache
Translate only on miss

Synonym Problem

CPU

$ TB

MEM

VA

PA
Tags

PA

Overlap $ access
with VA translation:
requires $ index to

remain invariant
across translation

VA
Tags

L2 $

Chap5 - 22© by Tien-Fu Chen@CCU

Cache Optimization Summary
Technique MR MP HW Cmplty

Larger Block Size + - 0
Higher Associativity + - 1
Victim Caches + 2
Pseudo-Associative Caches + 2
HW Prefetching of Instr/Data + 2
Compiler Controlled Prefetching + 3
Compiler Reduce Misses + 0
Priority to Read Misses + 1
Subblock Placement - + 1
Early Restart & Critical Word 1st + 2
Non-Blocking Caches + 3
Second Level Caches + 2
Small & Simple Caches ? - + 0
Avoiding Address Translation + 2
Pipelining Writes + 1

Chap5 - 23© by Tien-Fu Chen@CCU

Using Caches VS Large Register File on chip

Large Register File

Pro :
" All local scalars variables
" Compiler assigns global variables
" Register addressing
" May parallel access
" Small on chip and fast

Against :
" Significant overhead in context

switching
" Limit set on number of local

variables
" Only small fraction is actively used
" Rely on compiler to max usage

Caches

Pro :
• Recently used local scalar

• Blocks of memory

• Recently used global

• Memory addressing (associative
access)

Against :
• Non-uniform access latency

• Slow access time

• More hardware complexity

• Replacement overhead

Chap5 - 24© by Tien-Fu Chen@CCU

Main Memory
! Performance of Main Memory:

" Latency: Cache Miss Penalty
$ Access Time: time between request and word arrives
$ Cycle Time: time between requests

" Bandwidth: I/O & Large Block Miss Penalty

! Main Memory is DRAM

(Dynamic Random Access Memory)
" Dynamic since needs to be refreshed periodically (8 ms)
" Addresses divided into 2 halves (as a 2D matrix)

$ RAS or Row Access Strobe
$ CAS or Column Access Strobe

! Cache uses SRAM:

(Static Random Access Memory)
" No refresh (6 transistors/bit vs. 1 transistor/bit)
" Address not divided

Chap5 - 25© by Tien-Fu Chen@CCU

Improving main memory bandwidth

(a) one-word-wide

" CPU, Cache, Bus,
Memory same width

(b) wide memory

" Mux/ Cache, Bus,
Memory N words

(c) interleaved memory

" CPU, Cache, Bus 1 word:
Memory N Modules (4
Modules)

Chap5 - 26© by Tien-Fu Chen@CCU

Increasing memory bandwidth(more)

! Independent Memory Banks

" allow multiple independent accesses
" multiple memory controllers allow bank to operate independently

! Avoiding Bank Conflicts

" problem
int x[256][512];

for (j = 0; j < 512; j = j+1)
for (i = 0; i < 256; i = i+1)

x[i][j] = 2 * x[i][j];
" Even with 128 banks, since 512 is multiple of 128 conflict
" solution:

SW: loop interchange or declaring array not power of 2

HW: Prime number of banks

Chap5 - 27© by Tien-Fu Chen@CCU

DRAM-specific Interleaving

! Multiple RAS accesses:

" Nibble mode - supply three extra bits
" page mode - change column address until next access or refresh time
" static column - do not toggle the column access strobe on each column address

change

! New DRAMs to address gap

" Synchronous DRAM:
Provide a clock signal to DRAM, transfer synchronous to system clock

" RAMBUS:
Each Chip a module vs. slice of memory ?Short bus between CPU and chips
Does own refresh

Variable amount of data returned
1 byte / 2 ns (500 MB/s per chip)

