
chap4-0© by Tien-Fu Chen@CCU

Chapter 4

Tien-Fu Chen

National Chung Cheng Univ.

Computer Architectures

chap4-1© by Tien-Fu Chen@CCU

Advance Pipelining

! Static Scheduling

Have compiler to minimize the effect of structural, data, and control dependence

" advantages: simple hardware

" Examples:
Loop unrolling
Software Pipelining
Trace Scheduling

! Dynamic Scheduling

Have hardware to rearrange instruction execution to reduce the stalls
" advantages:

handle dependence unknown at compile time
simplify compiler design
code compatible

" Examples:
Scoreboarding
Tomasulo's Algorithm
Dynamic Branch Prediction

chap4-2© by Tien-Fu Chen@CCU

Instruction Level Parallelism
! Taking advantages of ILP

" Superscalar - multiple issue per cycle
" Superpipelining - deeper pipelines
" VLIW - very long instruction word

! Increase ILP by compiler
" Loop unrolling -

Increase instructions between loop branch by replicating loop body multiple times
" Software Pipelining

Reorganize loop code such that each iteration contains code chosen from different
iterations

" Trace Scheduling
Increase parallelism by selecting more code candidates

! Usually hardware techniques require compiler support
- Superscalar needs instruction scheduling
- VLIW needs trace scheduling

chap4-3© by Tien-Fu Chen@CCU

Static Scheduling - Loop Unrolling

! Basic Idea

! Features
" reduce loop overhead

branch
counter

" increase code size
" increase register requirement

loop: LD F0, 0(R1)
ADD F4, F0, F2
SUB R1, R1, #8
BNE R1, loop
SD 0(R1), F4

loop: LD F0, 0(R1)
ADD F4, F0, F2
SD 0(R1), F4

LD F6, 8(R1)
ADD F8, F6, F2
SD 8(R1), F8

LD F10, 16(R1)
ADD F12, F10, F2
SD 16(R1), F12

LD F14, 24(R1)
ADD F16, F14, F2
SD 24(R1), F16

SUB R1, R1, #32
BNE R1, loop

Unrolled by 4

chap4-4© by Tien-Fu Chen@CCU

Identify Dependencies by Compiler
! Goal:

compiler concerned about dependencies in program, whether or not a HW hazard
depends on a given pipeline

" Data dependency (True)
" Name dependency (anti-/output dependency)
" Control dependency

! (True) Data dependencies
(RAW if a hazard for HW)
" Instruction i produces a result used by instruction j, or
" Instruction j is data dependent on instruction k, and instruction k is data dependent

on instruction i.

" Easy to determine for registers (fixed names)
" Hard for memory:

Does 100(R4) = 20(R6)?
From different loop iterations, does 20(R6) = 20(R6)?

chap4-5© by Tien-Fu Chen@CCU

Name dependency
! Name dependence:

two instructions use same name but don’t exchange data

" Antidependence (WAR if a hazard for HW)

Instruction j writes a register or memory location that instruction i reads

from and instruction i is executed first

" Output dependence (WAW if a hazard for HW)

Instruction i and instruction j write the same register or memory location;

ordering between instructions must be preserved.

" no value being transmitted between instructions

! Register Renaming

" Statically by compiler
" Dynamic by hardware

chap4-6© by Tien-Fu Chen@CCU

Control dependency
! control dependence

Example
if p1 {S1;};
if p2 {S2;}

" S1 is control dependent on p1 and
" S2 is control dependent on p2 but not on p1.

! Two constraints on control dependences:

" An instruction that is control dependent on a branch cannot be moved before
the branch so that its execution is no longer controlled by the branch.

" An instruction that is not control dependent on a branch cannot be moved to
after the branch so that its execution is controlled by the branch.

! Control dependencies relaxed to get parallelism; get same effect if

" preserve exception behavior
" preserve data flow

chap4-7© by Tien-Fu Chen@CCU

Loop-carried dependence

! Where are data dependencies?
for (i=1; i<=100; i=i+1)

{ A[i+1] = A[i] + C[i]; /* S1 */
B[i+1] = B[i] + A[i+1]; /* S2 */

}
1. S2 uses the value, A[i+1], computed by S1 in the same iteration.
2. S1 uses a value computed by S1 in an earlier iteration, since iteration i computes

A[i+1] which is read in iteration i+1. The same is true of S2 for B[i] and B[i+1].

! loop-carried dependence

dependency exists between different iterations of the loop
" Loop with loop-carried dependence cannot be executed in parallel

! GCD test :
write A[a * i+b]
read A[c * i+d]

if loop-carried depend exists then
(d - b) mod GCD(a,c) = 0

chap4-8© by Tien-Fu Chen@CCU

Now Safe to Unroll Loop? (p. 240)

A[1] = A[1] + B[1];

for (i=1; i<=99; i=i+1) {
B[i+1] = C[i] + D[i];
A[i+1] = + A[i+1] + B[i+1];

}

B[101] = C[100] + D[100];

for (i=1; i<=100; i=i+1) {
A[i+1] = A[i] + B[i]; /* S1 */
B[i+1] = C[i] + D[i];} /* S2 */

OLD:

NEW:

Software Pipelining
!Software pipelining

Reorganize loops such that each iteration contains instruction
sequences from different iterations in original code

" need start-up & finish blocks

1. read 1. read
2. 2. read
3. add 3. add read
4. write 4. write add read

5. write add
6. write add
7. write

for i = 1 , n for i = 4 , n

end end

readi

addi−1

writei−3readi

addi
writei

Iteration
0 Iteration

1 Iteration
2 Iteration

3 Iteration
4

Software-
pipelined
iteration

Compared with loop unrolling
Before: Unrolled 3 times
1 L.D F0,0(R1)
2 ADD.D F4,F0,F2
3 S.D 0(R1),F4

4 L.D F6,-8(R1)
5 ADD.D F8,F6,F2
6 S.D -8(R1),F8

7 L.D F10,-16(R1)
8 ADD.D F12,F10,F2
9 S.D -16(R1),F12
10 DSUBUI R1,R1,#24
11 BNEZ R1,LOOP

After: Software Pipelined
1 S.D 0(R1),F4 ; Stores M[i]
2 ADD.D F4,F0,F2 ; Adds to M[i-1]
3 L.D F0,-16(R1);Loads M[i-2]
4 DSUBUI R1,R1,#8
5 BNEZ R1,LOOP

• Symbolic Loop Unrolling
– Maximize result-use distance
– Less code space than unrolling
– Fill & drain pipe only once per loop

vs. once per each unrolled iteration in loop unrolling

SW Pipeline

Loop Unrolled

o
ve

rl
ap

p
ed

o
p

s
Time

Time

chap4-11© by Tien-Fu Chen@CCU

Trace Scheduling
! Trace

a most likely sequence of instructions

! Two phases
" trace selection

- identify frequent codes
- may use loop unrolling to generate long

trace
- should consider data dependence

constraints and branch points
" trace compaction

- squeeze trace into a small of wide
instructions

- move instruction as early as possible
- compact instructions as few as possible
- add compensation code

! good or bad?
" scheduling across basic blocks
" code explosion

chap4-12© by Tien-Fu Chen@CCU

Summary of Static Scheduling
! Loop unrolling

+ multiple loop body for scheduling
+ reduce branch frequency
- expand code size
- must handle "residual" iterations
- increase register pressure

! Software Pipelining
+ no dependences in loop body
- does not reduce branch hazards
- need start-up and finish blocks
- increase register pressure

! Trace Scheduling
+ works for loops
+ increase most likely operations for VLIW
- more complex than loop unrolling
- code expansion

chap4-13© by Tien-Fu Chen@CCU

Advance Pipelining again
! Static Scheduling

Have compiler to minimize the effect of structural, data, and control
dependence

! Dynamic Scheduling
HW rearrange the instruction execution to reduce stalls

! Key idea
Allow instructions behind stall to proceed

DIVD F0,F2,F4
ADDD F10,F0,F8
SUBD F8,F8,F14

" Enables out-of-order execution => out-of-order completion
" ID stage checked both for structural & data dependencies
" Splitting ID into two stages

Issue - decode instructions, check for structural hazards
#Read operands - wait until no data hazards, then read operands

chap4-14© by Tien-Fu Chen@CCU

Advantages of Dynamic Scheduling

!Handles cases when dependences unknown at
compile time (e.g., because they may involve a
memory reference)

! It simplifies the compiler

!Allows code that compiled for one pipeline to run
efficiently on a different pipeline

!Hardware speculation, a technique with
significant performance advantages, that builds
on dynamic scheduling

chap4-15© by Tien-Fu Chen@CCU

Out-of-order execution
! Split pipelining stages:

" Original DLX pipelining
" New DLX pipelining

Issue - decode, check structural hazards

read operands - wait until no data hazards

execute -

write back-

! Scoreboarding

" multiple function units
" each instruction goes through the scoreboard
" centralized control scheme

control all instruction issue
detect all hazards

maintain hazard resolutions

" implemented in CD 6600

IF -
ID - decode, check for

hazards, fetch operands

EX - execute instruction

WB -

chap4-16© by Tien-Fu Chen@CCU

Scoreboarding
! Dealing with hazards

" Issue: check structural hazards
check for WAW hazards
stall issue until hazard cleared

" Read operand: check for RAW hazards
wait until data ready

" Execution: execute operations
notify scoreboard when completion

" Write back: check for WAR
stall write until clear

! Maintain three data structures
" Instruction status -

indicate the four steps of instruction in

" Function unit status -
indicate states of each function units

" Register result status -
indicate which function unit will write a register

chap4-17© by Tien-Fu Chen@CCU

Three Parts of the Scoreboard

1. Instruction status—which of 4 steps the instruction is in

2. Functional unit status—Indicates the state of the functional unit
(FU). 9 fields for each functional unit

Busy—Indicates whether the unit is busy or not
Op—Operation to perform in the unit (e.g., + or –)
Fi—Destination register
Fj, Fk—Source-register numbers
Qj, Qk—Functional units producing source registers Fj, Fk
Rj, Rk—Flags indicating when Fj, Fk are ready

3. Register result status—Indicates which functional unit will write
each register, if one exists. Blank when no pending instructions
will write that register

chap4-18© by Tien-Fu Chen@CCU

Detailed control and data maintaining

! Try to identify how scoreboard deals with
" RAW
" WAR

Queue both the operation and copies of its operands
Read registers only during Read Operands stage

" WAW

chap4-19© by Tien-Fu Chen@CCU

chap4-20© by Tien-Fu Chen@CCU

Scoreboarding (cont)
! Benefits

" Improvement of 1.7 for Fortran programs
" 2.5 for hand-coded assembly program
" How about modern compiler??

! Cost
" only as much as one function unit
" main cost in buses (4 times)

! Limitations
" Results are through register file, never data forwarded.
" Data dependency must wait for access to register file
" Stalls when WAW hazards occur
" Limited to instructions in basic block (small window)

Tomasulo's Algorithm
! Key features:

" Reservation stations at each functional unit
" A Common Data Bus (CDB) to broadcast all results
" Employ register renaming
" Use "tag" to handle hazard control
" load/store buffers

! Only three steps (not include IF, MEM)
" Issue -get instruction

check available function unit
or check available load buffer
stalls on structural hazards

" Execute - execute when operands available
if not, check CDB for operand

" Write back - if CDB available, write result
if not, stalls on CDB

! Data structures are attached to reservation stations, reg file, load
buffer

chap4-22© by Tien-Fu Chen@CCU

Data structure of Tomasulo’s Algorithm

chap4-23© by Tien-Fu Chen@CCU

Reservation Station Components

Op—Operation to perform in the unit (e.g., + or –)

Vj, Vk—Value of Source operands
" Store buffers has V field, result to be stored

Qj, Qk—Reservation stations producing source registers
(value to be written)

" Note: No ready flags as in Scoreboard; Qj,Qk=0 => ready
" Store buffers only have Qi for RS producing result

Busy—Indicates reservation station or FU is busy

Register result status—Indicates which functional unit will
write each register, if one exists. Blank when no pending
instructions that will write that register.

chap4-24© by Tien-Fu Chen@CCU

Bookkeeping rules

! How to eliminating WAW and WAR?

chap4-25© by Tien-Fu Chen@CCU

chap4-26© by Tien-Fu Chen@CCU

chap4-27© by Tien-Fu Chen@CCU

With load/store buffers

chap4-28© by Tien-Fu Chen@CCU

Tomasulo's Algorithm (cont)
! Differences from scoreboarding

" Control & buffers distributed with Function Units,
" HW renaming of registers to avoid WAW and WAR hazards
" CDB to broadcast results rather than waiting on registers
" load/store buffers are treated as function unit

! Reservation Stations
" Handle distributed hazard detection and instruction control
" Use 4-bit tag field to specify which RV station or load buffer will produce result

! Register renaming
" Tag assigned on instruction issue
" Tag discarded after write back to register
" WAW and WAR are eliminated
" Even better if a branch-taken strategy on a loop

multiple execution simultaneously
loop is unrolled dynamically by hardware

Comparisons

Scoreboaring
" Global data structure

centralized control
" Use register designator

+ simple, low cost

" Structural stalls on FU
" Solve :

RAW by register
WAR in write
WAW stalls on issue

" Limited:
register serialized
input output

" Stalls issue on block
S1 <- S2 * S3
S4 <- S5 * S6

Tomasulo's Alg
" Distributed control

" Use tagged register
+ register renaming

- tag allocation and
deallocation

- associative compare

" Structural stalls on RS
" Solve:

RAW by CDB
WAR copy opnd to RS
WAW by renaming

" Limited: CDB
+ broadcast result
- one result per cycle

chap4-30© by Tien-Fu Chen@CCU

Dynamic Branch Prediction

! For a loop

! Branch History Table
" Lower bits of PC address index table of 1-bit values
" Tells whether or not branch taken last time
" Problems:

the end of a loop and 1st time of next loop

! 2-bit scheme
where change prediction
only if get misprediction twice.

������
��
����
����
��	
��	
���

���

�����
����

�����

��

���������	

�

�������

�

�������

�	
�
����

����

�	
�
����

�

������

����

�

������

����

����

�	
�
����

chap4-31© by Tien-Fu Chen@CCU

Performance of Prediction Buffer

!Mispredict because either:
" Wrong guess for that branch
" Got history of wrong branch when index table

!Prediction Accuracy
" 4096 entry table programs vary from 1% misprediction (nasa7,

tomcatv) to 18% (eqntott), with spice at 9% and gcc at 12%
" 4096 about as good as infinite table, but 4096 is a lot of HW

!Performance of prediction buffer:
Given that 90% hit in buffer and 90% of correct guess

[]
Accuracy hit in buffer correct

hit in buffer luck guess

= +
−

= × +
=

(% *%)

(%) *

((*

1

90% 90%) 50% 10%)

86%

chap4-32© by Tien-Fu Chen@CCU

Correlating Branch Predictor
! Idea:

taken/not taken of recently executed
branches is related to behavior of next
branch

(as well as the history of that
branch behavior)

! a (m,n) predictor
" use the behavior of the last m branches
" choose from 2^m branch predictors
" each is n-bit predictor for a single branch
" cost:

2^m x n x # of prediction entries
selected by addr

Branch address (4 bits)

2-bits per branch
local predictors

Prediction

2-bit global
branch history

(01 = not taken then taken)

chap4-33© by Tien-Fu Chen@CCU

Branch Target Buffer
! Guess both branch
cond and branch target

IF: check BTB
ID: check cond
EX: refill BTB

! Penalty

! Total penalty
(60% taken branch)

hit in
buffer

pred-
iction

actual
branch

Penalty

Yes Taken Taken 0
Yes Taken N Taken 2

No Taken 2

������� �	� 	�
���� 	������

�	� 	�
���� �����

������

= +
−

= +
=

� �� �

� � ��� �

� �� �� � � �� �� �

�

�

� �

�	 �	 � �	
	 �

	 �	

Branch PC Predicted PC

=?

P
C

o
f

in
stru

ctio
n

F
E

T
C

H

Extra
Prediction

state
bits

Yes: instruction
is branch and
use predicted
PC as next PC

No: branch not
predicted, proceed normally

(Next PC = PC+4)

chap4-34© by Tien-Fu Chen@CCU

Variations of BTB
! Separating target buffer from a prediction buffer - PowerPC 620

" target address prediction
" branch direction

! Storing target instructions
" allow longer time to access BTB, better for a larger BTB
" allowed to perform branch folding

! Predicting indirect jumps
destination address varies at run-time
e.g., indirect procedure calls, procedure returns,
" return address stack

! Reducing misprediction penalty
" fetching from both predicted and unpredicted direction ->requiring dual-

ported instruction memory
" caching instructions from multiple paths

chap4-35© by Tien-Fu Chen@CCU

Multiple-Issue Processors
! Superscalar

" Issue varying # of instructions per clock
" be either statically scheduled by compiler or dynamically

scheduled using hardware
e.g. IBM PowerPC, Sun SuperSparc, DEC Alpha, HP 7100

! Very Long Instruction Words (VLIW)
" fixed number of instructions scheduled by the compiler
" inherently statically scheduled by compiler
" Joint HP/Intel agreement in 1998??

! Hardware support for more ILP
" Conditional/Predicated Instructions
" Speculative instructions with renaming
" Speculative execution

chap4-36© by Tien-Fu Chen@CCU

Superscalar
! Superscalar machines

" Issue multiple independent instructions per clock cycle
" if dependence exist, only first instruction issued
" hardware not dynamically concern about issue
" need n function units for degree of n
" would help if compiler properly schedule codes

! Limitation
" contention on FP registers

why: FP load/store vs FP operations
solution: dual-ported register file?

" Delayed load
why: original one delay slot, now 3 slots

" Delayed branch

! Advantages:
" code compatibility
" could reach CPI < 1

chap4-37© by Tien-Fu Chen@CCU

Dynamic Scheduling in Superscalar
!Dependencies stop instruction issue

" Code compiler for scalar version will run poorly on superscalar
" May want code to vary depending on how superscalar

!Simple approach:
" separate Tomasulo Control for separate reservation stations for Integer

FU/Reg and for FP FU/Reg
" Issue 2X Clock Rate, so that issue remains in order
" Only FP loads might cause dependency between integer and FP issue:

Replace load reservation station with a load queue; operands must be
read in the order they are fetched

Load checks addresses in Store Queue to avoid RAW violation
Store checks addresses in Load Queue to avoid WAR,WAW

chap4-38© by Tien-Fu Chen@CCU

VLIW (Very Long Instruction Word)
! tradeoff instruction space for simple decoding

" long instruction word has room for many operations
" all the operations the compiler puts in the long instruction word can execute in

parallel
E.g., 2 int ops, 2 FP ops, 2 mems, 1 branch

16 to 24 bits per field => 7*16 = 112 bits to 7*24 = 168 bits wide

! Features :
" Central controller issues a single long instruction
" Each instruction initiates many independent operations
" Each operation executed in fixed cycles
" Operations can be pipelined

! Compiler Aid
" loop unrolling
" scheduling code across basic blocks

trace scheduling

chap4-39© by Tien-Fu Chen@CCU

Limitations on multiple-issue
! Limited ILP

" 1 branch in 5 instructions => how to keep a 5-way VLIW busy?
" Latencies of units => many operations must be scheduled
" Need Pipeline Depth x No. Functional Units of independent

operations to keep machines busy

! Limits on VLIW
" Limited amount of parallelism available in instruction sequences
" require a large-number of memory and register bandwidth for

different functional units at the same time
" code size explosion

loop unrolling + no op code
" VLIW lock step => 1 hazard & all instructions stall
" binary compatibility is practical weakness

chap4-40© by Tien-Fu Chen@CCU

Comparisons

Superscalar
adv. :

" better code density
" code compatible

difference :

" issue decision at: Run Time

disadv :

" require more instruction fetching &
decoding

" more delayed slot to be filled
" different functional units
" muti-ported reg. file
" limited parallelism

VLIW

adv. :

" fixed instruction format
" more parallelism provided

" by trace scheduling at : Compile Time

disadv :

" static scheduling - compiler
" no dynamic decision
" code explosion
" multi-ported register file
" limited parallelism
" difficult to use data cache because of

sharing

chap4-41© by Tien-Fu Chen@CCU

Hardware Support for more ILP
! Conditional (predicate) instructions

" Eliminate branches by turning branches into conditionally
executed instructions

if (x) then A=B op C else NOP
" If false, then neither store result or cause exception
" Expanded ISA of Alpha, MIPS, PowerPC, SPARC have

conditional move; PA-RISC can nullify any following instructions

! Limitation of Conditional Branches
" Still takes a clock even if annulled
" Stall if condition evaluated late
" Limited use when control flow involves more than a simple

sequence; Complex conditions reduce effectiveness, condition
becomes known late in pipeline

" May increase CPI for conditional instructions or cause a slower
overall clock rate

chap4-42© by Tien-Fu Chen@CCU

Speculation
! Speculation:

Allow an instruction to issue that is dependent on branch predicted to be taken
without any consequences (including exceptions) if branch is not actually
taken (without undo)

Methods support ambitious speculation

! HW/SW cooperation
" HW and OS handle exceptions and return an undefined value for any

exception
" may not be acceptable

! Poison bits
" a poison bit added to each register and instruction
" a fault occurs on using a value from poison reg

! Speculation instruction with renaming
" boosting instruction by flagging as speculation and providing renaming and

buffering

chap4-43© by Tien-Fu Chen@CCU

Hardware-based Speculation
! Basic idea

" Allow instruction executed out of order but force them to commit
in order; prevent irrevocable action until commits

" separate speculative bypassing of results from real bypassing of
results

! Introducing Reorder Buffer
" buffer results of uncommitted instructions
" pass results among speculated instructions
" 3 fields: instruction. type, destination, and value
" key differences from Tomasulo’s Algorithm:

Tomasulo: read result from register once result is written
reorder buffer: supply operands between
completion and commit time

" replace load/store buffer
" Use reorder buffer number instead of reservation station buffer

chap4-44© by Tien-Fu Chen@CCU

Speculative Tomasulo’s Algorithm

!Four steps of Tomasulo’s algorithm
" Issue

If reservation station or reorder buffer slot free, issue instr & send
operands & reorder buffer no. for destination.

" Execution
When both operands ready then execute; if not ready, watch

CDB for result; when both in reservation station, execute
" Write result�

Write on Common Data Bus to all awaiting FUs & reorder buffer;
mark reservation station available.

" Commit
�When instr. at head of reorder buffer & result present, update

register with result (or store to memory) and remove instr from
reorder buffer.

chap4-45© by Tien-Fu Chen@CCU

Speculative DLX using Tomasulo’s Algorithm

chap4-46© by Tien-Fu Chen@CCU

Register renaming, virtual registers versus
Reorder Buffers
! Alternative to Reorder Buffer is a larger virtual set of

registers and register renaming

! Virtual registers hold both architecturally visible registers
+ temporary values
" replace functions of reorder buffer and reservation station

! Renaming process maps names of architectural registers
to registers in virtual register set
" Changing subset of virtual registers contains architecturally visible

registers

! Simplifies instruction commit: mark register as no longer
speculative, free register with old value

! Adds 40-80 extra registers: Alpha, Pentium,…
" Size limits no. instructions in execution (used until commit)

chap4-47© by Tien-Fu Chen@CCU

Limitation of ILP
! Hardware model of perfect processors

" Register renaming
infinite virtual registers and all WAW & WAR hazards are avoided

" Branch prediction
perfect; no mispredictions

" Jump prediction: jumps perfectly predicted => machine with perfect
speculation & an unbounded buffer of instructions available

" Memory-address alias analysis
addresses are known & a store can be moved before a load provided
addresses not equal

" 1 cycle latency for all instructions

! measurement : IPC
" instruction issues per cycle

! Observation
" FP programs are more sensitive to limit window size

Workstation Microprocessors 3/2001

Source: Microprocessor Report, www.MPRonline.com

Max issue: 4 instructions (many CPUs)
Max rename registers: 128 (Pentium 4)
Max BHT: 4K x 9 (Alpha 21264B), 16Kx2 (Ultra III)
Max Window Size (OOO): 126 intructions (Pent. 4)
Max Pipeline: 22/24 stages (Pentium 4)

chap4-49© by Tien-Fu Chen@CCU

SPEC 2000 Performance 3/2001 Source: Microprocessor Report, www.MPRonline.com

1.6X

3.8X

1.2X

1.7X

1.5X

Dynamic Scheduling in Intel Pentium II, III
Q: How pipeline 1 to 17 byte 80x86 instructions?

! Pentium does not pipeline 80x86 instructions

! Its decode unit translates the Intel instructions into 72-bit
micro-operations (~ MIPS)

! Sends micro-operations to reorder buffer & reservation
stations

! Many instructions translate to 1 to 4 micro-operations

! Complex 80x86 instructions are executed by a
conventional microprogram (8K x 72 bits) that issues long
sequences of micro-operations

! 14 clocks in total pipeline (~ 3 state machines)

chap4-51© by Tien-Fu Chen@CCU

Dynamic Scheduling in Intel Pentium
Parameter 80x86 micro-ops

Max. instructions issued/clock 3 6

Max. instr. complete exec./clock 5

Max. instr. commited/clock 3

Window (Instrs in reorder buffer) 40

Number of reservations stations 20

Number of rename registers 40

No. integer functional units (FUs) 2
No. floating point FUs 1
No. SIMD Fl. Pt. FUs 1
No. memory Fus 1 load + 1 store

chap4-52© by Tien-Fu Chen@CCU

Pipelining in Pentium

! 14 clocks in total (~3 state machines)

! 8 stages are used for in-order instruction fetch,
decode, and issue
" Takes 1 clock cycle to determine length of 80x86 instructions +

2 more to create the micro-operations (uops)

! 3 stages are used for out-of-order execution in one
of 5 separate functional units

! 3 stages are used for instruction commit

Instr
Fetch
16B
/clk

Instr
Decode
3 Instr

/clk

Renaming
3 uops

/clk

Execu-
tion
units

(5)

Gradu-
ation

3 uops
/clk

16B 6 uops
Reserv.
Station

Reorder
Buffer

chap4-53© by Tien-Fu Chen@CCU

Pentium block diagram

chap4-54© by Tien-Fu Chen@CCU

Pentium III Die Photo ! EBL/BBL - Bus logic, Front, Back
! MOB - Memory Order Buffer
! Packed FPU - MMX Fl. Pt. (SSE)
! IEU - Integer Execution Unit
! FAU - Fl. Pt. Arithmetic Unit
! MIU - Memory Interface Unit
! DCU - Data Cache Unit
! PMH - Page Miss Handler
! DTLB - Data TLB
! BAC - Branch Address Calculator
! RAT - Register Alias Table
! SIMD - Packed Fl. Pt.
! RS - Reservation Station
! BTB - Branch Target Buffer
! IFU - Instruction Fetch Unit (+I$)
! ID - Instruction Decode
! ROB - Reorder Buffer
! MS - Micro-instruction Sequencer

