Computer Architectures

Chapter 4

Tien-Fu Chen

National Chung Cheng Univ.

© by Tien-Fu Chen@CCU chap4-0

Advance Pipelining

O Static Scheduling

Have compiler to minimize the effect of structural, data, and control dependence
e advantages: simple hardware
e Examples:

Loop unrolling

Software Pipelining

Trace Scheduling

U Dynamic Scheduling

Have hardware to rearrange instruction execution to reduce the stalls

e advantages:
» handle dependence unknown at compile time
> simplify compiler design
» code compatible

e Examples:
Scoreboarding
Tomasulo's Algorithm

© by Tien-Fu Chyw@aaig Branch Prediction chap4-1

Instruction Level Parallelism
U Taking advantages of ILP

e Superscalar - multiple issue per cycle
e Superpipelining - deeper pipelines
e VLIW - very long instruction word
U Increase ILP by compiler
e Loop unrolling -

Increase instructions between loop branch by replicating loop body multiple times

e Software Pipelining

Reorganize loop code such that each iteration contains code chosen from different

iterations
e Trace Scheduling
Increase parallelism by selecting more code candidates

U Usually hardware techniques require compiler support

- Superscalar needs instruction scheduling
- VLIW needs trace scheduling

© by Tien-Fu Chen@CCU chap4-2
Static Scheduling - Loop Unrolling
J Basic Idea : loop: LD FO, O(R1)
loop: LD FO, O(R1) ADD F4 FO F2
ADD F4, FO, F2 , FO,
SUB R1,RI,#8 Sb 0(R1), F4
BNE R1, loop
O Features SD 0(R1), F4 LD F6, 8(R1)
ADD F8,F6, F2
e reduce loop overhead SD 8(R1), F8
> branch
> counter LD F10, 16(R1)
e increase code size ADD F12,F10, F2
e increase register requirement Sb - 16(R1), F12
LD F14, 24(R1)
Unrolled by 4 ADD F16, F14, F2
—= SD 24(R1), F16
— SUB R1,R1, #32
BNE R1, loop
chap4-3

© by Tien-Fu Chen@CCU

Identify Dependencies by Compiler

Q Goal:
compiler concerned about dependencies in program, whether or not a HW hazard
depends on a given pipeline
e Data dependency (True)
o Name dependency (anti-/output dependency)
e Control dependency

O (True) Data dependencies

(RAW if a hazard for HW)
e Instruction i produces a result used by instruction j, or

e Instruction j is data dependent on instruction k, and instruction k is data dependent

on instruction i.

o Easy to determine for registers (fixed names)
e Hard for memory:
> Does 100(R4) = 20(R6)?
> From different loop iterations, does 20(R6) = 20(R6)?

© by Tien-Fu Chen@CCU chap4-4

Name dependency

U Name dependence:

two instructions use same name but don’'t exchange data
o Antidependence (WAR if a hazard for HW)

Instruction j writes a register or memory location that instruction i reads
from and instruction i is executed first

e Output dependence (WAW if a hazard for HW)

Instruction i and instruction j write the same register or memory location;
ordering between instructions must be preserved.

e no value being transmitted between instructions
U Register Renaming

o Statically by compiler
e Dynamic by hardware

© by Tien-Fu Chen@CCU chap4-5

Control dependency

O control dependence

Example
if p1 {S1;};
if p2 {S2;}
e Sl is control dependent on pl and
e S2is control dependent on p2 but not on p1l.

U Two constraints on control dependences:
¢ An instruction that is control dependent on a branch cannot be moved before
the branch so that its execution is no longer controlled by the branch.

¢ An instruction that is not control dependent on a branch cannot be moved to
after the branch so that its execution is controlled by the branch.

O Control dependencies relaxed to get parallelism; get same effect if

e preserve exception behavior

e preserve data flow
© by Tien-Fu Chen@CCU chap4-6

Loop-carried dependence

U Where are data dependencies?
for (i=1; i<=100; i=i+1)
{ Ali+1] = Ali] + C[i]l; /*S1%
Bli+1] = B[i] + A[i+1]; /*S2*/

}

1. S2 uses the value, Afi+1], computed by S1 in the same iteration.

2. S1 uses a value computed by S1 in an earlier iteration, since iteration i computes
A[i+1] which is read in iteration i+1. The same is true of S2 for B[i] and B[i+1].

O loop-carried dependence

dependency exists between different iterations of the loop
e Loop with loop-carried dependence cannot be executed in parallel

O GCD test :
write A{a * _i+b]]
read A[c * i+d
if loop-carried depend exists then
(d-b) mod GCD(a,c)=0
© by Tien-Fu Chen@CCU chap4-7

Now Safe to Unroll Loop? (p. 240)

for (i=1; i<=100; i=i+1) {
OLD: Ali+1] = A[i] + B[i]; /*S1*
B[i+1] = C[i] + D[i];} /* S2 */

A[l] = A[1] + B[1];

NEW: for (i=1; i<=99; i=i+1) {
B[i+1] = C[i] + D[i];
Ali+1] = + A[i+1] + B[i+1];
}

B[101] = C[100] + D[100];

© by Tien-Fu Chen@CCU chap4-8

Software Pipelining
O Software pipelining

Reorganize loops such that each iteration contains instruction
sequences from different iterations in original code

e need start-up & finish blocks

1. read 1. read
2. 2. read
3. add 3. add read
4. write 4. write add read Iteration
5. write add S Nedion o _
6. write add 2 ”H?mnna?mn
7. write
for i=1,n for i=4, n ;ﬁgﬁg
read; write _3 iteration
add, add; _;
write; read;

end end

Compared with loop unrolling

Before: Unrolled 3 times

1 L.D FO,0(RL) 1
2 ADD.D F4, FO, F2 5
3 S.D O(RL),F4 3
4 L.D F6,-8(RL) 4
5 ADD.D F8, F6, F2 5
6 S.D -8(RlL),F8

7 L.D F10,-16(R1)

8 ADD.D F12, F10, F2

9 S.D -16(Rl),F12

10 DSUBU R1, R1, #24

11 BNEZ R1, LOOP

Symbolic Loop Unrolling

— Maximize result-use distance

— Less code space than unrolling

Fill & drain pipe only once per loop

W

overlapped ops

After: Software Pipelined
S.D
ADD. D
L.D
DSUBUI
BNEZ

O(Rl),F4 ; Stores Mi]
F4,F0,F2 ; Adds to Mi-1]
FO, - 16(R1); Loads Mi - 2]
R1, R1, #8

R1, LOOP

>

SW Pipeline

/ARRREE

Time
Loop Unrolled

ARV

Time

>

vs. once per each unrolled iteration in loop unrolling

Trace Scheduling
QO Trace

a most likely sequence of instructions

Q0 Two phases

e trace selection
- identify frequent codes

- may use loop unrolling to generate long

trace

- should consider data dependence
constraints and branch points

e trace compaction

- squeeze trace into a small of wide

instructions

- move instruction as early as possible

- compact instructions as few as possible

- add compensation code
U good or bad?

e scheduling across basic blocks

e code explosion
© by Tien-Fu Chen@CCU

M| = A + Bl

S

chap4-11

Summary of Static Scheduling

U Loop unrolling

+ multiple loop body for scheduling
+ reduce branch frequency

- expand code size

- must handle "residual” iterations
- increase register pressure

U Software Pipelining

+ no dependences in loop body

- does not reduce branch hazards
- need start-up and finish blocks

- increase register pressure

U Trace Scheduling

+ works for loops
+ increase most likely operations for VLIW
- more complex than loop unrolling

- code expansion
© by Tien-Fu Chen@CCU chap4-12

Advance Pipelining again
Q Static Scheduling

Have compiler to minimize the effect of structural, data, and control
dependence

O Dynamic Scheduling
HW rearrange the instruction execution to reduce stalls

0 Key idea

Allow instructions behind stall to proceed
DIVD FO,F2,F4
ADDD F10,F0,F8
SUBD F8,F8,F14

o Enables out-of-order execution => out-of-order completion
o |ID stage checked both for structural & data dependencies
e Splitting ID into two stages
»Issue - decode instructions, check for structural hazards
»Read operands - wait until no data hazards, then read operands

© by Tien-Fu Chen@CCU chap4-13

Advantages of Dynamic Scheduling

L Handles cases when dependences unknown at
compile time (e.g., because they may involve a
memory reference)

Q It simplifies the compiler

d Allows code that compiled for one pipeline to run
efficiently on a different pipeline

O Hardware speculation, a technique with
significant performance advantages, that builds
on dynamic scheduling

© by Tien-Fu Chen@CCU chap4-14

Out-of-order execution =

e . . ID - decode, check for
Q Split pipelining stages: hazards, fetch operands

¢ Original DLX pipelining EX - execute instruction
e New DLX pipelining WB -

Issue - decode, check structural hazards

read operands - wait until no data hazards

execute -
write back-

0 Scoreboarding

o multiple function units
e each instruction goes through the scoreboard
e centralized control scheme

> control all instruction issue

> detect all hazards

> maintain hazard resolutions

o implemented in CD 6600

© by Tien-Fu Chen@CCU chap4-15

Scoreboarding
O Dealing with hazards

e Issue: check structural hazards
check for WAW hazards
stall issue until hazard cleared
e Read operand: check for RAW hazards
wait until data ready
e EXxecution: execute operations
notify scoreboard when completion
e Write back: check for WAR
stall write until clear

] Maintain three data structures

e Instruction status -

indicate the four steps of instruction in
e Function unit status -

indicate states of each function units
e Register result status -

indicate which function unit will write a register
© by Tien-Fu Chen@CCU chap4-16

Three Parts of the Scoreboard

1. Instruction status—which of 4 steps the instruction is in

2. Functional unit status—Indicates the state of the functional unit
(FU). 9 fields for each functional unit
Busy—Indicates whether the unit is busy or not
Op—Operation to perform in the unit (e.g., + or -)
Fi—Destination register
Fj, Fk—Source-register numbers
Qj, Qk—Functional units producing source registers Fj, Fk
Rj, Rk—Flags indicating when Fj, Fk are ready

3. Register result status—Indicates which functional unit will write
each register, if one exists. Blank when no pending instructions
will write that register

© by Tien-Fu Chen@CCU chap4-17

Detailed control and data maintaining

Instruction status Wait until Bookkeeping
[ssue Mot busy (FLU and Busy [FU) « yes; Op(FUl& op; Fi(FU)+ 'D*;
st resule] ¥ FjiFU)&« "'51"; Fk(FU}« r82*';
Q] Result ("51'); Qe Result{'S52°); R«
not ; REkée=not Qk; Result('D')+ FU;
Read operands Bj and Rk Ri+= Mo; BkeHo

Execution complete

Functional umit done

Wnite result

WA F(FU) or
Ril £)=No) & (Fki 1)
#FiFU) or Rk([=Raol)

YE(if Qj (F)=FU then Rj(f)+ Yes);
YWE(Lif Qk(F)=FU then Rk {f)+ Yes];
Result (F1 (FU) &= 0; Busy (FU)+ Ho

U Try to identify how scoreboard deals with

e RAW

e WAR
> Queue both the operation and copies of its operands
> Read registers only during Read Operands stage

e WAW
© by Tien-Fu Chen@CCU

chap4-18

©b.

Instruction status

Instructiom Issue Head operands Exccution complete Write result
LD F6,34 (R2) W v ¥ N
LD F2,45{R31) k| W %
MULTD FPO,F2,F4 |
EUED FB,F&, K F2 |
DIvD F10,F0,F& |
ADDD F&,FB, F2
Functional unit status
Mame Rusy Op Fi Fi Fk 0 ik Kj Rk
Integer Wies | oad F2 R M
Multl Yis Muli Fi F2 F4 Inbeger Mo Yis
Mule2 Mo
Add Yes Sub F& F& F2 Integer Yes Mo
Divid Yes i Fli Fiy Fé Beluli] Mo Yes
Register result status
I Fi F4 i 5 Fii Fi2 s Fi0
F Bellualt Integer Sub Diwigle

L9

Scoreboarding (cont)

U Benefits

e Improvement of 1.7 for Fortran programs
e 2.5 for hand-coded assembly program
e How about modern compiler??

U Cost

e only as much as one function unit
e Mmain cost in buses (4 times)

O Limitations

e Results are through register file, never data forwarded.
o Data dependency must wait for access to register file
o Stalls when WAW hazards occur

e Limited to instructions in basic block (small window)

© by Tien-Fu Chen@CCU chap4-20

Tomasulo's Algorithm

0 Key features:

e Reservation stations at each functional unit

A Common Data Bus (CDB) to broadcast all results
Employ register renaming

Use "tag" to handle hazard control

load/store buffers

O Only three steps (not include IF, MEM)

e Issue -get instruction
check available function unit
or check available load buffer
stalls on structural hazards
o EXxecute - execute when operands available
if not, check CDB for operand
e Write back - if CDB available, write result
if not, stalls on CDB

U Data structures are attached to reservation stations, reqg file, load
buffer

Data structure of Tomasulo’s Algorithm

F oM instruction wnd

Floaiing-
From jpoiniL
mamoiry opsarahon
OuaLE FF reqisiess L
Load buflers
B
&
|
3
3 Cparand Siore buffors
i buges 5

mamory

\ Operalion bus To

r 3 b [

Resarealion T T
Slaons
= .
FP addars FF multipliars
T Cormmiman data bus {CDB)
chap4-22

2
1

= Pl il

© by Tien-Fu Chen@ <<

Reservation Station Components

Op—Operation to perform in the unit (e.g., + or -)

V], Vk—Value of Source operands
o Store buffers has V field, result to be stored

Qj, Qk—Reservation stations producing source registers
(value to be written)

o Note: No ready flags as in Scoreboard; Qj,Qk=0 => ready
e Store buffers only have Qi for RS producing result

Busy—Indicates reservation station or FU is busy

Register result status—Indicates which functional unit will
write each register, if one exists. Blank when no pending
instructions that will write that register.

© by Tien-Fu Chen@CCU chap4-23

Bookkeeping rules

Insiruction status

Wait uniil

Action or bookkeeping

| gz

Station or buffer empey

if (Register[*51°].0Q1 =0}

{R8[r] .Qj« Register[*'S51’] .Qi}
elese |(RS[r].Vi+—81]; RE[r].Qi+— 0};
if (Register[52] .Q1i#0)

(RS [r] .Qk+= Register[52] .0i};
glae {RS[r] .Vk«52; RS[r] .Oke 0}
ES [r] .Busy+ yes;

Eegiater['D'] .Qi=xr;

Execute

(RS[r].(y=0) and
{RS[r].Qk=0)

Mone—aoperands are i V) and Vk

Worite result

Exccution completed at £

and CDB available

VYxi{if (Register[x].Qi=r] { Fxe— regult;
Register([x) .Qie—0});

Wx{if (RS[x].Qj=r) {RS[x].Vje result;
RS[x] .07 «—0});

Txi1f (RS [x] .Qk=r]) I:RS lx)] . Vké= result;
RS [x] .Qké=0});

Wx{if (Store[x).Qi=r) {Store[x].V- result;
Store(x] .Qi &0});

RS [r] . Busy+ Ho

O How to eliminating WAW and WAR?

© by Tien-Fu Chen@CCU chap4-24
Instruction staius
Imstruction | EETTTY Execute Wirite result
LD F&,34 (R2) A | |
LD F2,45%(R3) ¥ v
MULTD FO,F2,F4 '
SUBD Fi,Fq, F2 N
DIVD Fl0,F0,F& y
ADO0 F5,FE,F2 ¥
Heservafion stations
Name Busy Op Vi Vk Qj Qk
Alel Yes SLIE Mem| 34+ Beps|R2]] R H
Add2 Yies AN Addl Lioad2
Add3 Mo
Belualt] Yies MLULT Regs[F4] Load?
Beluli2 Yes (1LY Mlem| 34+ Regs[R2]] Peluali]
Hegister status
Field Fn FI F4 Fifs FH Fli Fi2 3
i Pelualnl Linad? Add2 Addl % [TH [)5

ol

Instruction status

Instruction Issue Execute Write result
LD F&, 34 (R2) 4 A i

LD F2,45(R3) Y + Y
MULTD FO,F2,F4 Y A

SUBD F8,F6,F2 y W)
DIVD F10,F0,Fé |

ADDD F&,FB,F2 | A Y

Reservation stations

Name Busy Op Vi Yk Qj Qk
Addl Mo
Add2 No
Add3 No
Multl Yes MULT Mem[45+Regs[R3]] Regs[F4]
Mule2 Yes DIy Mem[34+Regs[R2]] Multl
Register status
Field Fi F2 F4 Fo F8 F10 F12 Fil
©by | Qi Mult1 Mult2 26
InRIruC TN s
Imstrstiom Firsmn Meratio Biitidog Exgcumls Worite resul
Lo Fa, 0[R2 1
MULTE: Fd,FPD;F2 1
50 1 (i) ¥4 i
Lo Fa, 0 (Rl 3 d
HULTD F4.F0.F i
20 O{R1), P4 b
Forne rv ol insm i bes
Namse haisy Fm v vk i Ok
Al]
Add2 P
Medd3 1]
Seliadt] Yies MNULILT Regs|F2) Lol
Wil b] ST Regs[F2] Load}
Hegil er slaliis
Ferld Fik FI Fd Fii F& Fil Fi . F My
ih I Slulel
Laomd bulfers =nare hulfers
Feeld Lasadd 1 Ll 2 Laoaid ¥ Field Spaie 1 Srewire I Sinine 3
Addreia Regs[R1] Regs[RIJ-E 0 Mult| Mali2
psy Yoz Yis Fan Blusy Tes Tes Pas
Address Beps[Ri] Eeps[ii]E 27

© by Tien-Fu Chen@CC

Tomasulo's Algorithm (cont)

U Differences from scoreboarding

Control & buffers distributed with Function Units,

HW renaming of registers to avoid WAW and WAR hazards
CDB to broadcast results rather than waiting on registers
load/store buffers are treated as function unit

U Reservation Stations

e Handle distributed hazard detection and instruction control
e Use 4-bit tag field to specify which RV station or load buffer will produce result

U Register renaming

e Tag assigned on instruction issue

e Tag discarded after write back to register

¢ WAW and WAR are eliminated

e Even better if a branch-taken strategy on a loop
- MUltiple execution simultaneously
loop is unrolled dynamically by hardware

© by Tien-Fu Chen@CCU

chap4-28

Comparisons

Scoreboaring

e Global data structure
centralized control

o Use register designator
+ simple, low cost

¢ Structural stalls on FU
e Solve :
RAW by register
WAR in write
WAW stalls on issue
o Limited:
register serialized
input output

¢ Stalls issue on block
S1<-S2*S3
S4 <-S5* S6

Tomasulo's Alg

¢ Distributed control

o Use tagged register
+ register renaming
- tag allocation and
deallocation
- associative compare
e Structural stalls on RS
e Solve:
RAW by CDB
WAR copy opnd to RS
WAW by renaming
¢ Limited: CDB
+ broadcast result
- one result per cycle

Dynamic Branch Prediction

O For aloop : ?opi
pPC [=Pty rl,A
g prediction
——— ble loopl

ble loop2
QO Branch History Table

e Lower bits of PC address index table of 1-bit values
¢ Tells whether or not branch taken last time
e Problems:

> the end of a loop and 1st time of next loop

O 2-bit scheme
taken taken
where change prediction not taken %
only if get misprediction twice. ot ennOt mken/
Aen
taken X

© by Tien-Fu Chen@CCU chap4-30

Performance of Prediction Buffer

O Mispredict because either:

e Wrong guess for that branch
¢ Got history of wrong branch when index table

O Prediction Accuracy

e 4096 entry table programs vary from 1% misprediction (nasa?7,
tomcatv) to 18% (egntott), with spice at 9% and gcc at 12%

e 4096 about as good as infinite table, but 4096 is a lot of HW

U Performance of prediction buffer:

Given that 90% hit in buffer and 90% of correct guess

Accuracy = (%hit in buffer * %correct) +
[(1-%hit in buffer) * luck guess]
= (90% x 90%) +(50% * 10%)

= 86%)
© by Tien-Fu Chen@CCU 0 chap4-31

Correlating Branch Predictor

Q Idea:

taken/not taken of recently executed
branches is related to behavior of next
branch

(as well as the history of that
branch behavior)

O a (m,n) predictor

e use the behavior of the last m branches
e choose from 2”m branch predictors

e each is n-bit predictor for a single branc
e COSt:

Branch address (4 bits)

2-bits per branch
local predictors

i

h

2"m x n x # of prediction entries
selected by addr

2-bit global
branch history
(01 = not taken then taken)

—>l Prediction I

© by Tien-Fu Chen@CCU chap4-32
Branch Target Buffer
B h PC Predicted PC
QO Guess both branch 2) e e
cond and branch target 2
ms
IF: check BTB § NS
ID: check cond 2
EX: refill BTB - A r
Yes: instruction
4 Penalty —> @_’is branch and Ex.tra.
— . Prediction
hit in pred- actual |Penalty * use predicted
buffer iction branch PC as next PC state
Yes Taken Taken 0 bits
Yes Taken [N Taken 2 No: branch not
No Taken 2 predicted, proceed normally
(Next PC = PC+4)
Q Total penalty
(60% taken branch)
Penalty = % hit in butter *% icorrect *2 +
(1 =% hit in butter)*% taken*?2
=(90%*10%*2)+(10%*60%*2)
=0.30 cycles chap4-33

© by Tien-Fu Chen@CCU

Variations of BTB

U Separating target buffer from a prediction buffer - PowerPC 620

o target address prediction
e branch direction

O Storing target instructions
o allow longer time to access BTB, better for a larger BTB
o allowed to perform branch folding

O Predicting indirect jumps

destination address varies at run-time
e.g., indirect procedure calls, procedure returns,
e return address stack

U Reducing misprediction penalty

o fetching from both predicted and unpredicted direction ->requiring dual-
ported instruction memory

¢ caching instructions from multiple paths

© by Tien-Fu Chen@CCU chap4-34

Multiple-Issue Processors

U Superscalar

o Issue varying # of instructions per clock

e be either statically scheduled by compiler or dynamically
scheduled using hardware

e.g. IBM PowerPC, Sun SuperSparc, DEC Alpha, HP 7100
U Very Long Instruction Words (VLIW)

o fixed number of instructions scheduled by the compiler
o inherently statically scheduled by compiler
e Joint HP/Intel agreement in 199877

U Hardware support for more ILP

o Conditional/Predicated Instructions
e Speculative instructions with renaming
e Speculative execution

© by Tien-Fu Chen@CCU chap4-35

Superscalar
O Superscalar machines

¢ Issue multiple independent instructions per clock cycle
o if dependence exist, only first instruction issued

e hardware not dynamically concern about issue

e need n function units for degree of n

o would help if compiler properly schedule codes

U Limitation

e contention on FP registers
why: FP load/store vs FP operations
solution: dual-ported register file?
e Delayed load
why: original one delay slot, now 3 slots
e Delayed branch
U Advantages:

e code compatibility
© by TiEQHIrRAGkREP! < 1 chap4-36

Dynamic Scheduling in Superscalar
L Dependencies stop instruction issue

e Code compiler for scalar version will run poorly on superscalar
e May want code to vary depending on how superscalar

Q Simple approach:
o separate Tomasulo Control for separate reservation stations for Integer
FU/Reg and for FP FU/Reg
o Issue 2X Clock Rate, so that issue remains in order
e Only FP loads might cause dependency between integer and FP issue:

> Replace load reservation station with a load queue; operands must be
read in the order they are fetched

» Load checks addresses in Store Queue to avoid RAW violation
> Store checks addresses in Load Queue to avoid WAR,WAW

© by Tien-Fu Chen@CCU chap4-37

VLIW (Very Long Instruction Word)

U tradeoff instruction space for simple decoding

¢ long instruction word has room for many operations

o all the operations the compiler puts in the long instruction word can execute in
parallel

E.g., 2 int ops, 2 FP ops, 2 mems, 1 branch
16 to 24 bits per field => 7*16 = 112 bits to 7*24 = 168 bits wide

U Features :

o Central controller issues a single long instruction

e Each instruction initiates many independent operations
e Each operation executed in fixed cycles

e Operations can be pipelined

O Compiler Aid
e loop unrolling
e scheduling code across basic blocks
trace scheduling

© by Tien-Fu Chen@CCU chap4-38

Limitations on multiple-issue

QO Limited ILP

e 1 branch in 5 instructions => how to keep a 5-way VLIW busy?
e Latencies of units => many operations must be scheduled

o Need Pipeline Depth x No. Functional Units of independent
operations to keep machines busy

U Limits on VLIW

o Limited amount of parallelism available in instruction sequences

e require a large-number of memory and register bandwidth for
different functional units at the same time

e code size explosion

loop unrolling + no op code
e VLIW lock step => 1 hazard & all instructions stall
e binary compatibility is practical weakness

© by Tien-Fu Chen@CCU chap4-39

Comparisons
Superscalar VLIW

adv. :

adv. :
e fixed instruction format

e better code densit
y e more parallelism provided

e code compatible

difference : e by trace scheduling at: Compile Time

e ISsue decision at: Run Time : _
—_— disadv :

disadyv : e static scheduling - compiler

e require more instruction fetching & e no dynamic decision

decoding _ « code explosion
e more delayed slot to be filled « multi-ported register file
o different functional units « limited parallelism
e muti-ported reg. file o difficult to use data cache because of
e limited parallelism sharing
© by Tien-Fu Chen@CCU chap4-40

Hardware Support for more ILP

U Conditional (predicate) instructions
o Eliminate branches by turning branches into conditionally
executed instructions
if (xX) then A=B op C else NOP
o If false, then neither store result or cause exception

o Expanded ISA of Alpha, MIPS, PowerPC, SPARC have
conditional move; PA-RISC can nullify any following instructions

U Limitation of Conditional Branches

e Still takes a clock even if annulled
e Stall if condition evaluated late

o Limited use when control flow involves more than a simple
sequence; Complex conditions reduce effectiveness, condition
becomes known late in pipeline

e May increase CPI for conditional instructions or cause a slower
overall clock rate

© by Tien-Fu Chen@CCU chap4-41

Speculation
O Speculation:

Allow an instruction to issue that is dependent on branch predicted to be taken
without any consequences (including exceptions) if branch is not actually
taken (without undo)

Methods support ambitious speculation

0 HW/SW cooperation

e HW and OS handle exceptions and return an undefined value for any
exception

e may not be acceptable

O Poison bits
e a poison bit added to each register and instruction
e a fault occurs on using a value from poison reg

O Speculation instruction with renaming

e boosting instruction by flagging as speculation and providing renaming and

buffering
© by Tien-Fu Chen@CCU chap4-42

Hardware-based Speculation

U Basic idea

e Allow instruction executed out of order but force them to commit
in order; prevent irrevocable action until commits

e separate speculative bypassing of results from real bypassing of
results

U Introducing Reorder Buffer

e Dbuffer results of uncommitted instructions
e pass results among speculated instructions
o 3fields: instruction. type, destination, and value
o key differences from Tomasulo’s Algorithm:
Tomasulo: read result from register once result is written

reorder buffer: supply operands between
completion and commit time

o replace load/store buffer
e Use reorder buffer number instead of reservation station buffer

© by Tien-Fu Chen@CCU chap4-43

Speculative Tomasulo’s Algorithm

O Four steps of Tomasulo’s algorithm

e ISsue

If reservation station or reorder buffer slot free, issue instr & send
operands & reorder buffer no. for destination.

e Execution

When both operands ready then execute; if not ready, watch
CDB for result; when both in reservation station, execute

e Write result

Write on Common Data Bus to all awaiting FUs & reorder buffer;
mark reservation station available.

e Commit

When instr. at head of reorder buffer & result present, update
register with result (or store to memory) and remove instr from

reorder buffer. -
HFHeorder
e Euff=er
L— =]
LE = +
IQES taotion = I IQES trtaotion = |
© by Tien-Fu Chen@CCU e =g asT = =aasr “hap4-44

Speculative DLX using Tomasulo’s Algorithm

Rsagrder buffer *

Frem irgbnsstion wWnif
Flaating-
(5 o]
opsaralion
R
Regisier ro
' msmary
ralaradareds)
Erom FP ragsiefs
T
tload resullts)
Cperand
Operation bus bisEs
L]
rr
Rasarvaticn
Blatng
FP sddess:

Cormimean data bis

© by Tien-Fu C

ap4-45

Register renaming, virtual registers versus

Reorder Buffers

O Alternative to Reorder Buffer is a larger virtual set of
registers and register renaming

QO Virtual registers hold both architecturally visible registers
+ temporary values

o replace functions of reorder buffer and reservation station

U Renaming process maps names of architectural registers
to registers in virtual register set

o Changing subset of virtual registers contains architecturally visible
registers

O Simplifies instruction commit: mark register as no longer
speculative, free register with old value
U Adds 40-80 extra registers: Alpha, Pentium,...
¢ Size limits no. instructions in execution (used until commit)

© by Tien-Fu Chen@CCU chap4-46

Limitation of ILP

U Hardware model of perfect processors

e Register renaming

infinite virtual registers and all WAW & WAR hazards are avoided
e Branch prediction

perfect; no mispredictions

e Jump prediction: jumps perfectly predicted => machine with perfect
speculation & an unbounded buffer of instructions available

e Memory-address alias analysis

addresses are known & a store can be moved before a load provided
addresses not equal

e 1 cycle latency for all instructions

0 measurement : IPC
e instruction issues per cycle

O Observation
e FP programs are more sensitive to limit window size

© by Tien-Fu Chen@CCU chap4-47

Workstatlon Mlcroorocessors 3/2001

Processor : . - ; ’

Clock Rate B33MHZ 1.20Hz EEEMHz 450MHz 1.0GHz 1.5CGHz 400MHz 4230MHz S0MHz
Cache (I/D/L2) | 64k/64K 636K 256 | 512110 264K |TeKMMeK 256K | 12K/BK/ 256K | 32K/32K TEES 16K 32ESBAK
Issue Rate 4 issue 3 %86 instr 4 issue 4 issue 3 xB6& instr 3 x ROPs 4 issue 4 is5ue 4 issue
Pipeline Stages | 7/%9 stages | 9/11 stages | 7/9 stages |7/8stages | 12/14 stages |22/24 stages | 6stages |6/9stages [14/15 stages
Cut of Order 80 instr 72ROPs 56 instr 32 instr 40 ROPs 126 ROPs 48 instr Mone Mone
Rename regs 45741 I6/36 S6total [16int/24 fp | 40 total 128 total 32/32 Mone Mone
EHT Entries 4K = 9-bit 4K = 2-bit 2K = 2-bit | 2K = 2-bit »>=512 AK = 2-bit | 2K = 2-bit (512 = 2-bit | 16K = 2-bit
TLE Entries 128/128 280/288 120 unified | 128/128 321 /84D 1281/650 | 64 unified | &41/64D 12815120
Memory B/AW | 2.66GB/s 2.1GB/s 1.54GB/s 1.6GB/s 1.0608/s 3.20B/s 539 MB/s | 1.9GB/s 4.8GB/s
Package CPOA-588 PLA-462 LOA-544 | SCC-1088 PCA-370 PCA-423 CPOA-527 | CLOA-787 1368 FC-LOA
IC Process 0.1Bu &M | 018u6M | 0250 2M | 0.22pem | 0.18u 6M 01BpeM | 0.25p4M | 0290 6M | 018p 7M
Die Size 115mm* 117mm? 477mm? 163mm? 106mm? 217mm? 20d4mm® | 126 mm? 210mm?
Transistors 15.4 million 37 million 130 million | 23 million 24 million 42 million | 7.2 million | 3.8 million | 29 million
Est mfg cost* f1al f62 §330 5110 5§39 5110 £125 §70 145
PowenMax) FEW* JEW BV * eV 30 55WI(TDF) 25W* 200Wy# E5W
Availability 1001 4000 3000 400 2000 400 2000 300 400

Max issue: 4 instructions (many CPUSs)
Max rename registers: 128 (Pentium 4)
Max BHT: 4K x 9 (Alpha 21264B), 16Kx2 (Ultra Ill)
Max Window Size (OOO): 126 intructions (Pent. 4)

Max Pipeline: 22/24 stages (Pentium 4)
Source.: Microprocessor Report, www.MPRonline.com

Alpha AMD IBEM

Processor 212648 Athlon Fower 3-II

System or Alpha ES40 RS/6000 Dell

Motherboard Model & - i 44P-170 Prec. 420
Clock Rate 833MHz . 450MHz 1GHz
External Cache BMEB BME Non=

164.gzip 392 n'a X 230 545 4 553 _ 226 165 349
175.vpr 452 n'a 421 285 354 258 384 212 383
176.8cc &17 nia 577 350 40 588 313 232 500
181.mcf 44 nia 384 498 276 473 563 356 474
186.crafty 604 n/a 472 304 523 497 334 175 439
197 parser 360 n/a 361 171 362 472 283 211 412
252.eo0n a45 nda 395 280 615 a50 360 209 465
253.perlbmk 526 rda 406 215 614 703 246 247 457
254, gap 365 nda 229 256 443 708 204 171 300
255 vortex 673 n/a fed iz 7 735 294 304 581
256.bzip2 Sal n/a 349 258 396 420 334 237 500
300.twolf 658 n/a 479 414 3594 403 451 243 473
SPECint_base2000 518 ; 286) 320 225 3
168.wupside 529 60 340 360 41.» ?594_ 280 284 497
171.5wim 1,156 506 761 279 493 1,244 300 285 752
172.mgrid 580 272 462 39 274 558 231 226 377
173.applu 424 298 563 327 280 641 237 150 221
177 .mesa 713 302 300 330 541 553 289 273 Ll
178.galgel 558 468 569 429 335 537 SES 735 1,266
179.art 1,540 213 419 965 410 514 995 920 590
183.equake 231 236 347 560 249 739 222 149 211
187 facerec 822 411 258 257 307 451 411 459 718
188.ammp 488 221 376 326 294 366 373 313 421
189.lucas 731 237 370 284 349 754 259 205 204
191.fma3d 528 365 302 340 297 427 192 207 302
200.sixtrack 340 256 286 234 170 257 199 159 273

301.aspi 553 278 523 349 3?'EI. X 427 252 189 340
SPECfp_base2000 590 304 356 319 27

Dynamic Scheduling in Intel Pentium Il, Il
Q: How pipeline 1 to 17 byte 80x86 instructions?

O Pentium does not pipeline 80x86 instructions

U Its decode unit translates the Intel instructions into 72-bit
micro-operations (~ MIPS)

U Sends micro-operations to reorder buffer & reservation
stations

U Many instructions translate to 1 to 4 micro-operations

U Complex 80x86 instructions are executed by a
conventional microprogram (8K x 72 bits) that issues long
sequences of micro-operations

U 14 clocks in total pipeline (~ 3 state machines)

Dynamic Scheduling in Intel Pentium

Parameter 80x86 micro-ops

Max. instructions issued/clock 3 6
Max. instr. complete exec./clock 5
Max. instr. commited/clock 3
Window (Instrs in reorder buffer) 40
Number of reservations stations 20

Number of rename registers 40

No. integer functional units (FUs) 2

No. floating point FUs 1

No. SIMD FI. Pt. FUs 1

No. memory Fus 1 load + 1 store

© by Tien-Fu Chen@CCU chap4-51

Pipelining in Pentium

O 14 clocks in total (~3 state machines)

Q 8 stages are used for in-order instruction fetch,
decode, and issue

e Takes 1 clock cycle to determine length of 80x86 instructions +
2 more to create the micro-operations (uops)

O 3 stages are used for out-of-order execution in one
of 5 separate functional units

0 3 stages are used for instruction commit

Reserv.
: Gradu-
Instr 16B Instr |6 uops —Station ation
Fetch Decode Renaming 3
—>| | P > || Pt 3uops 1P| P uops
16B 3 Instr
Jclk /clk
eIk lclk
© by Tien-Fu Chen@CCU chap4-52
System Bus [External) . L3 Cachs . . .
+— | Pentium block diagram
¥ Ciaiche Bt
Bus Inlerface Linit [
-
¥ I ¥ . Flexl IF
Fredructsnn Fagoh Linil i rsdnuction Cacha (L1 - - Iinit |
1} ll."l"l" Ny
¥ Branct " b= S
Incshnacfon Decoder ™" Targel ".:L:::;II"' ‘
Simipda Simpla Commapia Buller ¥
nshacfion Inesbuc o nshachicen ———
Dlacos]od Crpsppiiain R - o Microcoos From
| I | I 1 < Irdlruchion 10 e
!) 'y el
Regisier Alins Tabia
¥
Retrement
Fanramant Lird Himgeshaor Filn Data Cacha
[— — {Imt@l Arch LIk (L4
: Reorder Buffer (Instruction Pool) Aepsters
‘ | L a
Flessration Slabon
¥
Exsoution Lini
SIMD FP Floating i . Memary
Linit Point Linit o "":‘;'" Inderfnce
FPU FPU) s - Writ
» L] | chap4-53

nigimal Dada-Rasulls Busas

Pentium Ill Die Photo

O EBL/BBL - Bus logic, Front, Back
0 MOB - Memory Order Buffer

O Packed FPU - MMX FI. Pt. (SSE)
O IEU - Integer Execution Unit

U FAU - FI. Pt. Arithmetic Unit

O MIU - Memory Interface Unit

O DCU - Data Cache Unit

Q0 PMH - Page Miss Handler

Q DTLB - Data TLB

O BAC - Branch Address Calculator
U RAT - Register Alias Table

Q SIMD - Packed FI. Pt.

U RS - Reservation Station

© by Tien-Fu Chen@CCU

U BTB - Branch Target Buffer

Q IFU - Instruction Fetch Unit (+1$)

Q ID - Instruction Decode

U ROB - Reorder Buffer

O MS - Micro-instruction Sequencer
chap4-54

