Computer Architectures

Chapter 3

Tien-Fu Chen

National Chung Cheng Univ.

© by Tien-Fu Chen@CCU chap3-0
Basic Pipelining
O Examples in daily life
Laundry, Waiting queue,
Q Instruction Execution
Instruction | Register . Memory Write
fetch fetch Execution access Register
D P| elinin Instruction | Register . Memory Write
p g fetch fetch Execution access Register
Instruction | Register . Memory Write
fetch fetch Execution access Register
Instruction | Register . Memory Write
fetch fetch Execution access Register
e Programs expect sequential execution
o Results be as if instructions were executed sequentially
o Depending on program constraints to determine the execution
parallelism
» data dependency
» control dependency
chap3-1

© by Tien-Fu Chen@CCU

Basic steps of Execution
U Five Execution Steps

¢ Instruction Fetch
MAR<-PC ; IR<-M[MAR] ; NPC <-PC+4

Instruction decode/register read
A <- Rsl; B<-Rs2

Execution
mem: MAR <- A +IR16..31; MDR<-Rd
ALU: ALUopt<-A op (B or IR 16..31)
Brch: ALUOpt<-PC+IR16..31

Memory access/brnach completion
mem: MDR<-M[MAR] or M[MAR]<-MDR
Brch:if (cond) then PC<-ALUopt

e Write back 1 2 3 4 %v 5 6 7 8
) 1 I[F ID EX mem
| Rd < ALU9pt o.r MDR 1 F I EX mem WB
U Five-stage Pipelining i+2 [F ID EX mem WB
143 IF ID EX mem WB
1+4 IF ID EX mem
© by Tien-Fu Chen@CCU chap3-2

DLX datapat! |

Clclock cycles: e

ebranches take 4 cycles

eall other require 5 cycles i
I:Isev%ral iImprovements are
possible

ecomplete ALU earlier
emerge two ALUs
emulticycle implementation

© by Tien-Fu Chen@CCU chap3-3

Principle of Pipelining

O Efficiency of Pipelining
T: total execution time of an instruction
An instruction requires n stages
each stage takes
e Without pipelining

latency =T =3t
1 1
Throughput = = = ——
T >t
o With pipelining
latency =nxmaxt =T
n
Throughput = <
maxt, Xt
e Speedup Speedup = old latency < 2t <n
new latency max t,
© by Tien-Fu Chen@CCU chap3-4

Efficiency of Pipelining

A > 0 extra delay between stage

O With an n-stage pipeline
latency = n x(max t, +A) 2T +nl

n
<
A+maxt, >t

Throughput =

_ old latency < X2t

Speedup <
new latency A+ maxt,
U Goal ==>reduce clock cycle

<n

U Possible delay

e Latches
e clock/data skew

O No pipelining is useful if clock is less than sum of delay
© by Tien-Fu Chen@CCU chap3-5

What have we learned from pipelining?

U Pipelining does not help latency of single task, it
helps throughput of entire workload

U Pipeline rate limited by slowest pipeline stage
O Multiple tasks operating simultaneously
U Potential speedup = Number of pipe stages

U Unbalanced lengths of pipe stages reduces
speedup

O Time to fill pipeline and time to drain pipeline
reduce speedup

© by Tien-Fu Chen@CCU chap3-6

Hazards of Pipelining

J Hazards

Situations that prevents the next instruction from execution

e Structural Hazards
Resource conflicts

o Data Hazards
Data dependence between instructions

e Control Hazards
Due to the change of control stream

U Revisit Efficiency of Pipelining

old time _ cycle ,,, xCPI
x CPI

unpip

C el eedu
|deal CPI = “”r‘]’pe' ea SPeedup newtime cycle

pipe pipe

— CPl g XN
CPl i + stall cycles per inghaps-7

© by Tien-Fu Chen@CCU

Structural Hazards

Occurs when two instructions use the same resource

U Solutionl: Stall

Detects the hazard and stall execution
+ low cost
- increase CPI (cause bubble)

O Solution 2: Duplicate Resource

add more hardware resource available
+ Good performance

- increase cost

- may increase cycle time

O Solution 3: Pipelined Resource

make every use of resource in simple way
eg. at most once, at the same stage,

use exactly one cycle
© by Tien-Fu Chen@CCUy y chap3-8

Data Hazards

Occur when order of access in pipelining is different from sequential
execution

0 Read-After-Write (RAW)

data(true)-dependence,

. |: add rl1,r2,r3
late write=>early read C J- sub r4.r1.r3

O Write-After-Read (WAR)

anti-dependence: late read => early write C |: sub r4,r1,r3
J: add r1,r2,r3
Ki mul r6,rl1,r7

O Write-After-Write (WAW)

output-dependence |- sub rl.r4.r3
slow write => fast operation <: J: add r1,r2,r3

Ki mul r6,rl1,r7 chap3-9

© by Tien-Fu Chen@CCU

Solutions for RAW
O Stall/interlock

detect RAW, then stall pipelining until the hazard is cleared
+ low cost, simple solution

- Increase CPI - cause pipeline stall or bubble

U Bypass/Forwarding/Short-circuiting

detect hazard by hardware, then forward results to ALU input, instead of
reading from registers

‘ Register ‘
file

mux mux

+ reduce stalls

- extra hardware complexity — L buffer

© by Tien-Fu Chen@CCU chap3-10

Solutions for RAW(cont)

U Hardware requirements for bypassing

o Comparators between source and destinations
e Multiplexors on inputs to ALU

o Extra data path MDR from input to ALU

e a set of result buffers to save

U Delayed load - software solution

e A load requiring that the following instruction not use its results
o delay slot (load delay):

the pipeline slot after a load
o Compiler moves instructions to eliminate bubbles =>
instruction scheduling
pipelining scheduling

© by Tien-Fu Chen@CCU chap3-11

Situation of hazard detection

[epandenos
pequiring stall

ADD ES,R&,RT
SUB ES8,E&,RT
OF B9, RE, BT
LW RL,45 (EZ}
ADD BS,R1,R7T
SUB EB8,RE,RT
OR B9, RG, BT

exists on R 1 in the immediately following

Situation Example code Action
SeqUence
Mo dependence LW R1,45(R2} Nehazard possible because no dependence

thres Insiructions.

Comparaiors detsct the use of R1 inthe ADD
and srall the ADD (and S8 and OF) bafore the

ADD begine EX.

order

with acgessas in

ADD ES,RG,RT
SUB RA,R&E,R7
or Ro,R1,RT

CF ocours in the second half of the 10 phase,
while the write of the loaded data ocewrred in

Depandencs LW Rl,qa5 Rz} Comparators desect use of R1 in SUB and for
overcome by ADD RS, RE.RT ward pesull of kbad vo ALL intime for S0B 10
forwanding 50 Ra,RL,RT begin EX

OF KW, Rb, KT
Dependence LW RL,4%(E2} Meaction reguired because the read of R1by

the firgt half,

FIGURE 317 Situations that the plpaline hazard detection hardware can see by comparing the

dastination and scurces of adjacent instructions.

© by Tien-Fu Chen@CCU

: chap3-12
© by Tien-Fu Chen@CCU P
/ —\HaZan m%ad
detection
unit
EX/MEM
| e MEM/WB
M —>| WB—
2
% M
g 5 |
g NE
E Registers / bata
Instruction = ALY >
pC memory] ‘\ memory M
u
M \ X
> u
: \
\
IF/ID.RegisterRs
IF/ID.RegisterRt ~
IF/ID.RegisterRt Rt M EXMEM Registerrd
IF/ID.RegisterRd Rd :(J -
o ID/EX.RegisterRt — rd | Iq/mwardngw.__ " lM/WB Registeer_
Rt | unit) v .
\ =
/
AN 7

Pipelining Scheduling

O Scheduling instruction at compile-time

U When cannot schedule the interlock, a NOP instruction is

inserted

U For example, for A=B+C, D=E-F

Unscheduled

LW rl1,B
nop

LW r2, C
nop

ADD r3,r2,rl
LW r1, E
nop

LW r2, F
nop

SUB r3,r2,rl
SwW r3,D

Scheduled

LW r1,B
LW r2,C
LW r4,E
ADD r3,r2,rl
LW r5,F
SwW r3,A
SUB re,r4,r5
SwW re,D

O may increase register pressure

© by Tien-Fu Chen@CCU chap3-14

Control Hazards

U bubbles after branch S s 4 5 6 7 q)
i(ry IF ID EX mem WB
i+1 IF xxx xxx IF ID EX mem WB
i+2 xxx xxx xxx IF ID EX mem
143 xxx xxx xxx IF ID EX
1+4 xxx xxx xxx IF D

O Three cycle stall for each branch is significant, since may
include 30% of branches.

Q Original branch operations

EXE:

ALUOuUt <- PC + |IR16..31

cond<-A op O

MEM:

if (cond) PC <- ALUOut

O Separating operations of branch

o find out the branch condition earlier
© by Tien-FueCHE@@uuter target address earlier

chap3-15

Solutions for control hazards

U Move up control point to ID phase
ID:
A<-Rsl, B<-Rs2,
TA <- PC +1R16..31
if (A op 0) PC<-BTA
EXE:
MEM:
¢ only one-cycle bubble
e Extra cost (impact):

> Additional PC adder required
» cannot afford too complex condition check- how about EQ, NE, GT

> may increase cycle time
U Delayed Branch

-Execute next instruction regardless cond
-Scheduling the branch-delay slot(s) at compile-time

U Branch Prediction hap3-16
© by Tien-Fu Chen@CCU cnaps

Pipelined DLX Datapath Figure 3.22, page 163

EEWEH W E WD
4
- L iw
-A.'!I'.'l| u

~

[-
afr -
i - . " .
Inumucdun | 1 + '\-
- A ERY S | Flag bt "y ALLY - $

r
LT T] I
- #
L] | [EF1H -
=i -~ "
u e MEMiary —e
v g
L
' |

FIGUHRE 3.22 The stall lrom branch Bazards can be reduced by moving the gero fesl snd branch Largel caboubalisn

inla the 1D phase of the pipeline.
wi IMFU J-7

© by Tien-Fu Chen@CCU

Scheduling branch-delay slots

Q Fill from before branch

When: branch independent instruction
improve? always
Q Fill from from target

When: OK to execute target instruction
improve? branch taken
affect: may increase code size

Q Fill from fall through

When: OK to execute following instruction
improve? branch not taken

O When no instruction can be scheduled, no-op is filled

O Additional cost:
o multiple PCs for interrupt

© by Tien-Fu Chen@CCU chap3-18

Delayed Branch (Cont.)

O Effectiveness of compiler on 1 slot

o Fills about 60% of branch delay slots

e About 80% of instructions executed in branch delay slots useful in
computation

e About 50% (60% x 80%) of slots usefully filled

Q Difficulty

e restrictions on instructions that are scheduled into delay slots

o Delayed Branch downside: 7-8 stage pipelines, multiple instructions
issued per clock (superscalar)

¢ ability to predict at compile time

O Canceling/nullifying branch

e direction is included in branch

e if correctly predicted, a delayed slot is normally executed

o if predicted incorrectly, the branch slot is turned in to a no-op
¢ eliminate the requirement of insertion

© by Tien-Fu Chen@CCU chap3-19

Branch Prediction

e Guess the direction of branch
e Guess the target of branch

O Static - at compile time

predict not-taken

predict taken

op-code as hints

use like/not-likely bit in instructions
delayed branches

O Dynamic - at run time

e branch-prediction buffer

> one-bit prediction

> two-bit finite state prediction
e branch folding

"fold" a nonbranch instruction and its following branch into a single
instruction

=> eliminate the branch

¢ multiple prefetch and branch bypass
© by Tien-Fu Chen@CCU P yp chap3-20

Comparison of branch scheme

Given 14% of branch and 65% taken
CPI effective =1+ CP' branch

CPI branch — Yobranch x (%taken x Penalty

taken

+%not _ taken x Penaltynot taken)

_1+% branch x stall
Speedupover_stall -

1+ CPIl raneh
Scheduling Branch CPl speedupv. speedupv.
scheme penalty unpipelined stall
Stall pipeline 3 142 3.5 1.0
Predict taken 1 1.14 4.4 1.26
Predict not taken 1 1.09 4.5 1.29
Delayed branch 0.5 1.07 4.6 1.31

© by Tien-Fu E@NgHE®Nal & Unconditional = 14%, 65% change PC chap3-21

Interrupts

An event forcing the machine to abort instruction's execution before
its completion.

U Examples

e Page fault, OS traps(calls)
¢ Arithmetic overflow

¢ Protection Violation

e Breakpoint

¢ |/O device requests

O Why difficult in pipelining
e break in pipelining
¢ should occur within instructions

e must be restartable
> linking return address
» saving PSW (or CC codes)
> correct state change
U More complication on delayed branches

e instructions in pipelining may not be sequentially related
© by Tien-FuLhpp@Gifd) (n+1) PC's chap3-22

Handling Interrupts
O Precise interrupt
a pipelining to handle interrupts follows sequential semantics.

¢ instructions before faulting are completed
o Effects of instructions after are squashed
¢ Faulting instruction can be restartable

O Precise interrupts are usually required

0 Must handle simultaneous interrupts
e |IF - memory problem (page fault, protection violation, misaligned memory
access)
ID - illegal or privileged instructions
EX - arithmetic interrupts
MEM - memory problem
WB - none

O What order should interrupts be handled

e in order - completely precise
© by Tie%_,iqu{p,gj%i@ﬁe order as it appears chap3-23

Multi-cycle Operations

U Not all operations complete in one cycle
e allinone cycle == sjow clock
o allow separate function units for pipelining
> Integer unit
> FP/integer multiply
> FP adder
> FP/integer divider
e Separate integer and FP registers
o all integer instructions operate on integer registers
¢ all FP instructions operate on FP registers

O Extra work on instruction issuing

e check for structural hazards

e check for RAW hazards

e check for data forwarding

e check for overlapping instructions
» contention for registers in WB

, > possible WAR and WAW hazards
© by Tien-Fu Chen%?FU . L
> difficult to provide precise interrupts

chap3-24

Dealing with overlapping

U Contention in WB

o why? FP operations vary in exec time
e solution:
static priority, instruction stalls after issue

U WAR hazards

o why? DIVF FO, F2, F4
SUBF F4, F§, F10

e solutions:
always read register at the same time
should not occur in DLX

U WAW hazards

o Why? DIVF FO, F2, F4
SUBF FO, F8, F10
e solutions
> delay SUBF until DIVF enters MEM

> stamp out DIVF results h
© by Tien-Fu Chen@CCU chap3-25

Multicycle on interrupts

DIVF FO, F2, F4
ADDF F10, F8, F10
SUBF F12, F12, F14

O hard to maintain precise interrupts

- QUt-Of-Order execution

e instructions are completed in a different order from the order they are
issued

U Solutions:

e ignore problems and assume imprecise interrupts - not acceptable
e queue results of operations until preceding instructions are completed
m———=has to store results
> history table - roll back when interrupts
> future table - keep newer values
e software support
» save information for trap handlers
» software simulate unfinished instructions

o allow issue only if preceding instructions are safe

© by Tien-Fu Chen@CCU chap3-26

