
chap3-0© by Tien-Fu Chen@CCU

Chapter 3

Tien-Fu Chen

National Chung Cheng Univ.

Computer Architectures

chap3-1© by Tien-Fu Chen@CCU

Basic Pipelining
! Examples in daily life

Laundry, Waiting queue,

! Instruction Execution

! Pipelining

" Programs expect sequential execution
" Results be as if instructions were executed sequentially
" Depending on program constraints to determine the execution

parallelism
data dependency
control dependency

Instruction

fetch

Register

fetch
Execution

Memory

access

Write

Register

Instruction

fetch

Register

fetch
Execution

Memory

access

Write

Register

Instruction

fetch

Register

fetch
Execution

Memory

access

Write

Register

Instruction

fetch

Register

fetch
Execution

Memory

access

Write

Register

chap3-2© by Tien-Fu Chen@CCU

Basic steps of Execution
! Five Execution Steps

" Instruction Fetch
MAR<-PC ; IR<-M[MAR] ; NPC <- PC+4

" Instruction decode/register read
A <- Rs1; B<-Rs2

" Execution
mem: MAR <- A +IR16..31; MDR<-Rd
ALU: ALUopt<-A op (B or IR 16..31)
Brch: ALUOpt<-PC+IR16..31

" Memory access/brnach completion
mem: MDR<-M[MAR] or M[MAR]<-MDR
Brch:if (cond) then PC<-ALUopt

" Write back
Rd <- ALUopt or MDR

! Five-stage Pipelining

�

���

���

���

���

�

��

�

�	

��

�

�

�	

��

�

��

�

�	

��

�

��

��

�

�	

��

�

��

��

�

�	

�

��

��

�

�

��

��

chap3-3© by Tien-Fu Chen@CCU

DLX datapath

$clock cycles:
"branches take 4 cycles
"all other require 5 cycles

$several improvements are
possible

"complete ALU earlier
"merge two ALUs
"multicycle implementation

PC

Instruction�
memory

Address

In
st

ru
ct

io
n

Instruction�
[20– 16]

MemtoReg

ALUOp

Branch

RegDst

ALUSrc

4

16 32
Instruction�
[15– 0]

0

0
Registers

Write�
register

Write�
data

Read�
data 1

Read�
data 2

Read�
register 1

Read�
register 2

Sign�
extend

M�

u�
x

1
Write�

data

Read�

data M�

u�
x

1

ALU�

control

RegWrite

MemRead

Instruction�
[15– 11]

6

IF/ID ID/EX EX/MEM MEM/WB

MemWrite

Address

Data�
memory

PCSrc

Zero

Add
Add�

result

Shift�
left 2

ALU�

result
ALU

Zero

Add

0

1

M�

u�
x

0

1

M�

u�
x

chap3-4© by Tien-Fu Chen@CCU

! Efficiency of Pipelining
T: total execution time of an instruction
An instruction requires n stages
each stage takes
" Without pipelining

" With pipelining

" Speedup

Principle of Pipelining

latency T t i= = ∑

latency n t Ti= × ≥max

Throughput
T t i

= =
∑

1 1

Throughput
t

n
ti i

= ≤
∑

1
max

Speedup
old latency

new latency

t

t
ni

i

= ≤ ∑ ≤
max

chap3-5© by Tien-Fu Chen@CCU

Efficiency of Pipelining
extra delay between stage

! With an n-stage pipeline

! Goal ==> reduce clock cycle

! Possible delay
" Latches
" clock/data skew

! No pipelining is useful if clock is less than sum of delay

∆ > 0

latency n t T ni= × + ≥ +(max)∆ ∆

Throughput
t

n
ti i

=
+

<
∑

1

∆ max

Speedup
old latency
new latency

t
t

ni

i

= ≤ ∑
+

<
∆ max

chap3-6© by Tien-Fu Chen@CCU

What have we learned from pipelining?

!Pipelining does not help latency of single task, it
helps throughput of entire workload

!Pipeline rate limited by slowest pipeline stage

!Multiple tasks operating simultaneously

!Potential speedup = Number of pipe stages

!Unbalanced lengths of pipe stages reduces
speedup

!Time to fill pipeline and time to drain pipeline
reduce speedup

chap3-7© by Tien-Fu Chen@CCU

Hazards of Pipelining

!Hazards
Situations that prevents the next instruction from execution
" Structural Hazards

Resource conflicts

" Data Hazards
Data dependence between instructions

" Control Hazards
Due to the change of control stream

!Revisit Efficiency of Pipelining

instpercyclesstallCPI

nCPI

CPIcycle

CPIcycle

timenew

timeold
Speedup

ideal

ideal

pipepipe

unpipunpip

+
×=

×
×

==
Ideal CPI

CPI

n
unpipelined=

chap3-8© by Tien-Fu Chen@CCU

Occurs when two instructions use the same resource

! Solution1: Stall
Detects the hazard and stall execution
+ low cost
- increase CPI (cause bubble)

! Solution 2: Duplicate Resource
add more hardware resource available
+ Good performance
- increase cost
- may increase cycle time

! Solution 3: Pipelined Resource
make every use of resource in simple way
eg. at most once, at the same stage,
use exactly one cycle

Structural Hazards

chap3-9© by Tien-Fu Chen@CCU

Data Hazards
Occur when order of access in pipelining is different from sequential

execution

! Read-After-Write (RAW)
data(true)-dependence,
late write=>early read

! Write-After-Read (WAR)
anti-dependence: late read => early write

! Write-After-Write (WAW)
output-dependence
slow write => fast operation

I: add r1,r2,r3
J: sub r4,r1,r3

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

chap3-10© by Tien-Fu Chen@CCU

Solutions for RAW
! Stall/interlock

detect RAW, then stall pipelining until the hazard is cleared
+ low cost, simple solution
- Increase CPI - cause pipeline stall or bubble

! Bypass/Forwarding/Short-circuiting
detect hazard by hardware, then forward results to ALU input, instead of

reading from registers

+ reduce stalls
- extra hardware complexity

��� ���

������

���

��	
����
�
�

chap3-11© by Tien-Fu Chen@CCU

Solutions for RAW(cont)
! Hardware requirements for bypassing

" Comparators between source and destinations
" Multiplexors on inputs to ALU
" Extra data path MDR from input to ALU
" a set of result buffers to save

! Delayed load - software solution

" A load requiring that the following instruction not use its results
" delay slot (load delay):

the pipeline slot after a load
" Compiler moves instructions to eliminate bubbles =>
instruction scheduling
pipelining scheduling

chap3-12© by Tien-Fu Chen@CCU

Situation of hazard detection

chap3-13© by Tien-Fu Chen@CCU

Forwarding and stall in DLX

PC
Instruction�

memory

Registers

M�

u�
x

M�

u�
x

M�

u�
x

Control

ALU

EX

M

WB

M

WB

WB

ID/EX

EX/MEM

MEM/WB

Data�
memory

M�

u�
x

Hazard�
detection�

unit

Forwarding�
unit

0

M�

u�
x

IF/ID

In
st

ru
ct

io
n

ID/EX.MemRead

IF
/ID

W
rit

e

P
C

W
rit

e

ID/EX.RegisterRt

IF/ID.RegisterRd

IF/ID.RegisterRt

IF/ID.RegisterRt

IF/ID.RegisterRs

Rt
Rs

Rd

Rt EX/MEM.RegisterRd

MEM/WB.RegisterRd

chap3-14© by Tien-Fu Chen@CCU

Pipelining Scheduling
! Scheduling instruction at compile-time

! When cannot schedule the interlock, a NOP instruction is
inserted

! For example, for A=B+C, D=E-F
Unscheduled Scheduled
LW r1,B LW r1,B
nop LW r2,C
LW r2, C LW r4,E
nop ADD r3,r2,r1
ADD r3,r2,r1 LW r5,F
LW r1, E SW r3,A
nop SUB r6,r4,r5
LW r2, F SW r6,D
nop
SUB r3,r2,r1
SW r3,D

! may increase register pressure

chap3-15© by Tien-Fu Chen@CCU

Control Hazards
! bubbles after branch

! Three cycle stall for each branch is significant, since may
include 30% of branches.

! Original branch operations
EXE:

ALUOut <- PC + IR16..31
cond <- A op 0

MEM:
if (cond) PC <- ALUOut

! Separating operations of branch
" find out the branch condition earlier
" Computer target address earlier

������
���
��	
��

���

�
�

	
��
�

��
���
���

�
���
���
���
���

�
��
�
���
���
���

�

��
�
���
���

�

��
��
�
���

�

���
��
��
�

�

��
���
��
��

chap3-16© by Tien-Fu Chen@CCU

Solutions for control hazards

! Move up control point to ID phase
ID:

A<-Rs1, B<-Rs2,
TA <- PC + IR16..31
if (A op 0) PC <- BTA

EXE:
MEM:
" only one-cycle bubble
" Extra cost (impact):

Additional PC adder required
cannot afford too complex condition check- how about EQ, NE, GT
may increase cycle time

! Delayed Branch
-Execute next instruction regardless cond
-Scheduling the branch-delay slot(s) at compile-time

! Branch Prediction

chap3-17© by Tien-Fu Chen@CCU

Pipelined DLX Datapath Figure 3.22, page 163

chap3-18© by Tien-Fu Chen@CCU

Scheduling branch-delay slots
! Fill from before branch

When: branch independent instruction
improve? always

! Fill from from target
When: OK to execute target instruction
improve? branch taken
affect: may increase code size

! Fill from fall through
When: OK to execute following instruction
improve? branch not taken

! When no instruction can be scheduled, no-op is filled

! Additional cost:

" multiple PCs for interrupt

chap3-19© by Tien-Fu Chen@CCU

Delayed Branch (Cont.)
! Effectiveness of compiler on 1 slot

" Fills about 60% of branch delay slots
" About 80% of instructions executed in branch delay slots useful in

computation
" About 50% (60% x 80%) of slots usefully filled

! Difficulty
" restrictions on instructions that are scheduled into delay slots
" Delayed Branch downside: 7-8 stage pipelines, multiple instructions

issued per clock (superscalar)
" ability to predict at compile time

! Canceling/nullifying branch
" direction is included in branch
" if correctly predicted, a delayed slot is normally executed
" if predicted incorrectly, the branch slot is turned in to a no-op
" eliminate the requirement of insertion

chap3-20© by Tien-Fu Chen@CCU

Branch Prediction
" Guess the direction of branch
" Guess the target of branch

! Static - at compile time
" predict not-taken
" predict taken
" op-code as hints
" use like/not-likely bit in instructions
" delayed branches

! Dynamic - at run time
" branch-prediction buffer

one-bit prediction
two-bit finite state prediction

" branch folding
"fold" a nonbranch instruction and its following branch into a single

instruction
=> eliminate the branch

" multiple prefetch and branch bypass

chap3-21© by Tien-Fu Chen@CCU

Comparison of branch scheme
Given 14% of branch and 65% taken

CPI CPI

CPI

effective branch

branch branch taken Penalty

not taken Penalty

taken

not taken

= +

= × ×

+ ×

1

% (%

% _)
_

Speedup
branch stall

C PIover stall
branch

_
%= + ×

+
1

1

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.42 3.5 1.0

Predict taken 1 1.14 4.4 1.26

Predict not taken 1 1.09 4.5 1.29

Delayed branch 0.5 1.07 4.6 1.31

Conditional & Unconditional = 14%, 65% change PC

chap3-22© by Tien-Fu Chen@CCU

Interrupts
An event forcing the machine to abort instruction's execution before
its completion.

! Examples
" Page fault, OS traps(calls)
" Arithmetic overflow
" Protection Violation
" Breakpoint
" I/O device requests

! Why difficult in pipelining
" break in pipelining
" should occur within instructions
" must be restartable

linking return address
saving PSW (or CC codes)
correct state change

! More complication on delayed branches
" instructions in pipelining may not be sequentially related
" require (n+1) PC's

chap3-23© by Tien-Fu Chen@CCU

Handling Interrupts
! Precise interrupt
a pipelining to handle interrupts follows sequential semantics.

" instructions before faulting are completed
" Effects of instructions after are squashed
" Faulting instruction can be restartable

! Precise interrupts are usually required

! Must handle simultaneous interrupts
" IF - memory problem (page fault, protection violation, misaligned memory

access)
" ID - illegal or privileged instructions
" EX - arithmetic interrupts
" MEM - memory problem
" WB - none

! What order should interrupts be handled
" in order - completely precise
" handle in the order as it appears

chap3-24© by Tien-Fu Chen@CCU

Multi-cycle Operations
! Not all operations complete in one cycle

" all in one cycle slow clock
" allow separate function units for pipelining

Integer unit
FP/integer multiply
FP adder
FP/integer divider

" Separate integer and FP registers
" all integer instructions operate on integer registers
" all FP instructions operate on FP registers

! Extra work on instruction issuing
" check for structural hazards
" check for RAW hazards
" check for data forwarding
" check for overlapping instructions

contention for registers in WB
possible WAR and WAW hazards
difficult to provide precise interrupts

chap3-25© by Tien-Fu Chen@CCU

Dealing with overlapping
! Contention in WB

" why? FP operations vary in exec time
" solution:

static priority, instruction stalls after issue

! WAR hazards
" why?

" solutions:
always read register at the same time
should not occur in DLX

! WAW hazards
" why?

" solutions
delay SUBF until DIVF enters MEM
stamp out DIVF results

����
����

��	
��	
��
��	
�	
���

����
����

��	
��	
��
��	
�	
���

chap3-26© by Tien-Fu Chen@CCU

Multicycle on interrupts

! hard to maintain precise interrupts

out-of-order execution
" instructions are completed in a different order from the order they are

issued

! Solutions:
" ignore problems and assume imprecise interrupts - not acceptable
" queue results of operations until preceding instructions are completed

has to store results
history table - roll back when interrupts
future table - keep newer values

" software support
save information for trap handlers
software simulate unfinished instructions

" allow issue only if preceding instructions are safe

����
����
����

�	
����
���
��	
���
����	
���
����
���

