
chap2-0© by Tien-Fu Chen@CCU

Chapter 2

Tien-Fu Chen

National Chung Cheng Univ.

Computer Architectures

chap2-1© by Tien-Fu Chen@CCU

Instruction Set Design

instruction set

software

hardware

Which is easier to change/design???

chap2-2© by Tien-Fu Chen@CCU

Instruction Set Architecture: What must be specified?

Instruction

Fetch

Instruction

Decode

Operand

Fetch

Execute

Result

Store

Next

Instruction

!Instruction Format or Encoding
" how is it decoded?

!Location of operands and result
" where other than memory?
" how many explicit operands?
" how are memory operands located?
" which can or cannot be in memory?

!Data type and Size

!Operations
" what are supported

!Successor instruction
" jumps, conditions, branches
" fetch-decode-execute is implicit!

chap2-3© by Tien-Fu Chen@CCU

Instruction Sets
! Instruction Set

An agreement between architects and machine language
programmers

! Aspects
" Operations

Arithmetic and logical +, -, X, /...
Data Transfer - load/store
Control - branch, jump, call, return
Floating Point operations - FADD, FDIV
String
System support
HLL (high-level languages)

" Operands
operand storage
number of operands
addressing operands
Type and size of operands
Implicit/Explicit operands

chap2-4© by Tien-Fu Chen@CCU

Evolution of Instruction Sets
! Major advances in computer architecture are typically

associated with landmark instruction set designs

" Ex: Stack vs GPR (System 360)
" CISC vs RISC

!Design decisions must take into account:
" technology
" machine organization
" programming languages
" compiler technology
" operating systems

! And they in turn influence these factors

chap2-5© by Tien-Fu Chen@CCU

What is good for instruction set?
! Orthogonality

No special registers, few special cases, all operand modes available
with any data type or instruction type

! Completeness
Support for a wide range of operations and target applications

! Regularity
No overloading for the meanings of instruction fields

! Streamlined
Resource needs easily determined

! Ease of compilation (programming?)

! Ease of implementation

! Scalability

chap2-6© by Tien-Fu Chen@CCU

Classifying Instruction Set Architecture
! Stack: 0 address

add (sp)<- (sp) + (sp-1)

! Accumulator: 1 address, 1+x address
add A acc=acc + mem[A]
addx A acc=acc + mem[A + x]

! General Purpose Register: 2,3 address

add A,B EA(A)=EA(A) + EA(B)
add A B C EA(A)=EA(B) + EA(C)

! Load/Store: 3 address
add Ra Rb Rc Ra=Rb + Rc
load Ra Rb Ra= mem[Rb]
store Ra Rb mem[Rb]= Ra
" access memory only with load and store instructions

chap2-7© by Tien-Fu Chen@CCU

Comparing Number of Instructions

Code sequence for (C = A + B) for four classes of
instruction sets:

Stack Accumulator

Register
(load-store)

Push A Load A Load R1,A

Push B Add B Load R2,B

Add Store C

Register
(register-memory)

Load R1,A

Add R1,B

Store C, R1 Add R3,R1,R2

Pop C Store C,R3

chap2-8© by Tien-Fu Chen@CCU

Issues of Operands
!Operand Storage

either registers, memory, implicit

!Number of operands
" 0: stack machine
" 1: accumulator
" 2,3: register set/memory

A d v a n ta g e s D is a d v a n ta g e s

re g - re g
(lo a d /s to re)
(0 ,3)

s im p le ,
f ix e d - le n g th ,
f ix e d c y c le s

la rg e r in s tr c o u n t ,
m u s t b e lo a d e d in to
re g is te rs

re g -m e m
(1 ,2)

n o t n e c e s s a r ily lo a d e d
e a s y e n c o d in g
g o o d c o d e d e n s ity

in e q u iv a le n t o p e ra n d s
c lo c k s m a y v a ry

m e m -m e m
(3 ,3)

m o s t c o m p a c t ,
n o re g is te r lim it

la rg e v a r ia t io n o f
in s t ru c t io n le n g th ,
b o tt le n e c k in m e m o ry

chap2-9© by Tien-Fu Chen@CCU

Issues of Operands(Cont)
! Addressing Operands

" Endian Convention
Ordering the bytes within a word

" Big Endian: MSB at xx00

" Little Endian: LSB at xx00

" Aligned vs. Misaligned

w o rd a d d r M S B L S B
0 0 1 2 3

4 4 5 6 7

e x . : IB M , M o to ro la

w o rd a d d r M S B L S B
0 3 2 1 0

4 7 6 5 4

e x . In te l, D e c

0 1 2 3

Aligned

Not
Aligned

chap2-10© by Tien-Fu Chen@CCU

Issues of Operands(Cont)

!Addressing Mode:determination of effective address

" register Ri
" Immediate #n
" Base+displacement M[Ri + #n]
" Register indirect M[Ri]
" Indexed M[Ri, Rj]
" Absolute M[#n]
" Memory indirect M[M[Ri]]
" PC-relative M[PC + #n]
" Auto-Increment M[Ri]; Ri+=d
" Auto-Decrement Ri-=d; M[Ri]

chap2-11© by Tien-Fu Chen@CCU

Implicit/Explicit operands
!Compiler issue

!Take branch on conditional code as example

A d v a n ta g e s D is a d v a n ta g e s

C o n d it io n
c o d e

-b e s e t fo r fr e e -C o n s tr a in s c o d e
r e o r d e r in g ,

-E x tr a s ta te to s a v e

C o n d it io n
r e g is te r

-S im p le ,
-N o s p e c ia l s ta te to s a v e

-U s e u p a r e g is te r

C o m p a r e &
b r a n c h

-N o e x tr a c o m p a r e ,
-N o s ta te p a s s e d b e tw e e n
in s tr u c t io n s

-M a y b e to o m u c h
w o r k p e r in s tr u c t io n

chap2-12© by Tien-Fu Chen@CCU

Instruction Set Architecture

!CISC vs. RISC

! Instruction Format Widths

C I S C R I S C
I n s t r u c t i o n
s e t

- l a r g e i n s t r n v a r i e t y
- v a r i a b l e f o r m a t s
- v a r i a b l e i n s t r l e n g t h

- S m a l l i n s t r . S e t
- F i x e d f o r m a t
- F i x e d l e n g t h

o p e r a n d
s t o r a g e

r e g - m e m
m e m - r e g

r e g - r e g

A d d r e s s i n g
m o d e

c o m p l e x s i m p l e

G P r e g i s t e r s 8 - 2 4 + s p e c i a l r e g s l a r g e n u m b e r

C P U c o n t r o l m i c r o c o d e , h a r d w i r e d h a r d w i r e d

c a c h e / T L B e x t e r n c a c h e o n - c h i p c a c h e & T L B

Variable ……

Fixed:

Hybrid:

chap2-13© by Tien-Fu Chen@CCU

Encoding Instruction

Fixed Hybrid Variable
L/S

load/store
R/M

Reg-mem
R+M

Reg-plus-mem

3-addr format
32b instr size

2-addr format
16/32/64b instr sizes

2/3-addr format
byte-variable size

IBM RS/6000
IBM PowerPC
MIPS R2000
HP PA RISC
DEC Alpha
AMD 29000
SPARC
(reg window)

IBM S/360
IBM 3033
Fujitsu
Hitachi
Intel x86
(byte-variable size)

VAX
Motorola 680x0

chap2-14© by Tien-Fu Chen@CCU

DLX

! A RISC architecture related to MIPS

! 32-bit byte addresses

! Load/Store - only displacement

! Registers
" 32 32-bit General-Purpose Registers
" 16 64-bit (32 32-bit) Floating-Point Reg
" FP status register

! Emphasize
" A simple load/store instruction set
" Design for pipelining efficiency
" An easily decoded instruction set
" Efficiency as a compiler target

chap2-15© by Tien-Fu Chen@CCU

DLX (Cont)
! Three fixed-length instruction format

" I-Format

ALU ops with immed rd<-rs1 op #immed
load/store rd<-> M[rs1+#imm]
conditional branch pc<-cond: pc+=#im

" R-Format

Reg-Reg ALU operations
rd <- rs1 func rs2

" J-Format
unconditional jumps

pc += #offset

��

��

������

op rs rt rd

register

Register (direct)

Base+index

immedop rs rtImmediate

immedop rs rt

register +
Memory

chap2-16© by Tien-Fu Chen@CCU

DLX Instruction Set

!Data transfers
load/store full word
load/store byte/halfword
load/store FP single/double
moves between GPR and FP registers

!Arithmetic/Logical
Add/Substract unsigned, immediate
MUL/DIV signed, unsigned
AND, OR, XOR immediate
Load high immediate
Shift left/right

! Control
Conditional branch
Conditional branch testing FP bit
Jump&link(JAL),Jump&link

register(JALR)
Jump, Jump register

! Floating Point

chap2-17© by Tien-Fu Chen@CCU

MIPS instruction format

! A "Typical" RISC
" 3-address, reg-reg arithmetic instruction
" Single address mode for load/store:

base + displacement
" no indirection
" Simple branch conditions
" Delayed branch

Op
31 26 01516202125

Rs1 Rd immediate

Op
31 26 025

Op
31 26 01516202125

Rs1 Rs2

target

Rd Opx

Register-Register
561011

Register-Immediate

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Jump / Call

chap2-18© by Tien-Fu Chen@CCU

When does CPU need to sign extend?

!When value is sign extended, copy upper bit to full
value:
Examples of sign extending 8 bits to 16 bits:

00001010 ⇒⇒⇒⇒ 00000000 00001010
10001100 ⇒⇒⇒⇒ 11111111 10001100

!When is an immediate value sign extended?
" Arithmetic instructions (add, sub, etc.) sign extend immediates even

for the unsigned versions of the instructions!
" Logical instructions do not sign extend

! Load/Store half or byte do sign extend, but unsigned
versions do not.

chap2-19© by Tien-Fu Chen@CCU

MIPS data transfer instructions
Instruction Comment

SW 500(R4), R3 Store word
SH 502(R2), R3 Store half
SB 41(R3), R2 Store byte

LW R1, 30(R2) Load word
LH R1, 40(R3) Load halfword
LHU R1, 40(R3) Load halfword unsigned
LB R1, 40(R3) Load byte
LBU R1, 40(R3) Load byte unsigned

LUI R1, 40 Load Upper Immediate (16 bits shifted left by 16)

Why need LUI?

0000 … 0000

LUI R5

R5

