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Abstract. We investigated the problem of constructing the maximum consensus tree from rooted triples. We
showed the NP-hardness of the problem and developed exact and heuristic algorithms. The exact algorithm is based
on the dynamic programming strategy and runs in O((m + n2)3n) time and O(2n) space. The heuristic algorithms
run in polynomial time and their performances are tested and shown by comparing with the optimal solutions. In
the tests, the worst and average relative error ratios are 1.200 and 1.072 respectively. We also implemented the
two heuristic algorithms proposed by Gasieniec et al. The experimental result shows that our heuristic algorithm
is better than theirs in most of the tests.
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1. Introduction

Evolutionary trees are used to present the relationship among a set of species. The leaves
in an evolutionary tree correspond to the species and internal nodes are the ancestors of the
species. Constructing evolutionary trees is an important problem in computational biology
and there are different approaches. We investigated the problem of constructing evolutionary
trees from rooted triples.

A rooted triple, or triple for brevity, represents the relationship of three species. As
shown in figure 1, a triple (a(bc)) specifies lca(a, b) = lca(a, c) > lca(b, c), in which
lca(a, b) is the lowest common ancestor of the two leaves and relation “>” means “is an
ancestor of”. For a set of triples, the exact consensus tree is the tree satisfies all given
triples.

Given a set of triples, the existence of the exact consensus tree can be determined in
polynomial time (Aho et al., 1981). For a set of constraints of the form lca(a, b) > lca(c, d),
the algorithm in Aho et al. (1981) determines if there is a tree satisfying all constraints
and finds such a tree if it exists. A triple (a(bc)) is equivalent to lca(a, c) > lca(b, c)
and is a special case of the constraints considered in Aho et al. (1981). An algorithm for
constructing all exact consensus trees from triples was also developed (Ng and Wormald,
1996). Unfortunately, it is often impossible to find the exact consensus tree and we want
to find the tree satisfying as many given triples as possible. We shall call the optimization
problem the maximum consensus tree from rooted triples problem, or the MCTT problem
for brevity. Gasieniec et al. (1999) showed that the problem to find the maximum consensus
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Figure 1. Left: rooted triples (a(bc)), (c(ad)), (b(ad)), (c(bd)); Right: the maximum consensus tree. The tree
satisfies all triples except (c(bd)).

tree from constraints of the form lca(a, b) > lca(c, d) is NP-hard. They also proposed
two heuristic algorithms and discussed the theoretical performance ratios. The algorithms
also work for the MCTT problem but the complexity of the MCTT problem was left
open.

Similar problems for unrooted trees were also investigated. A quartet represents the
relationship of four species. To determine if there is a tree satisfying a given set of quartets
were shown to be NP-complete (Steel, 1992). Therefore the corresponding optimization
problem is obviously NP-hard.

In this paper, we show that the MCTT problem is NP-hard. (Recently the NP-hardness
was also independently shown by a different reduction (Jansson, 2001).) Exact and heuris-
tic algorithms are also presented. The exact algorithm is based on the dynamic program-
ming strategy and runs in O((m + n2)3n) time and O(2n) space. The performances of the
heuristic algorithms were tested by comparing their outputs with the exact solutions. In
the tests, the worst and average relative error ratios are 1.200 and 1.072 respectively. We
also implemented the two heuristic algorithms proposed by Gasieniec et al. (1999). The
experimental result shows that our heuristic algorithm is better than theirs in most of the
tests.

The time complexity of the MCTT problem is shown in Section 2. In Section 3, we
present the exact and heuristic algorithms and the experimental results. We give a discussion
in Section 4.

2. The computational complexity

In this section, we shall show the NP-hardness of the MCTT problem by reducing the
Feedback Arc Set problem to it. We first give the definition of the Feedback Arc Set
problem.
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Definition 1. Let G = (V, A) be a directed graph. A subset A′ of A is a feedback arc set if
every directed cycle in G contains at least one arc in A′. Given a directed graph G = (V, A)
and an integer k, the Feedback Arc Set problem asks if there is a feedback arc set A′ with
|A′| ≤ k.

The Feedback Arc Set problem is NP-complete (Garey and Johnson, 1979; Karp,
1972).

Definition 2. Let a and b be nodes of a tree. The lowest common ancestor of a and b is
denoted by lca(a, b). We write a > b if a is an ancestor of b.

Definition 3. A rooted triple, or triple for brevity, over a species set is a constraint on the
relationship of three species. Let V be a species set and a, b, c ∈ V , the rooted triple (a(bc))
over V represents lca(a, b) = lca(a, c) > lca(b, c) in the desired tree.

We say that a tree satisfies a triple or a triple is compatible with a tree if the relationship
represented by the triple is satisfied in the tree.

Definition 4. Given a set Y of rooted triples over leaf set V , the maximum consensus tree
from triples (MCTT) problem looks for a binary tree T with leaf set V such that the number
of triples compatible with T is maximum.

The computational complexity is shown in the next theorem.

Theorem 1. The MCTT problem is NP-hard.

Proof: We reduce the Feedback Arc Set problem to the MCTT problem. Given an instance
G = (V, A) and k of the Feedback Arc Set problem, we shall construct a set of rooted triples
Y and show that the directed graph G contains a feedback arc set of k arcs if and only if
there is a tree compatible with |A| − k triples from Y .

Let x /∈ V . For every arc (u, v) ∈ A, there is a corresponding triple (u(xv)) in Y . Suppose
that A′ is a feedback arc set of G and |A′| = k . Since A′ is a feedback arc set, removing
A′ from G results in a directed acyclic graph G1 = (V, A1), in which A1 = A\A′. Since
G1 contains no cycle, we may assign each vertex v a label f (v) ∈ {1 . . . p} such that
f (u) < f (v) for every (u, v) ∈ A1, where p ≤ |V | is number of nodes of the longest path
in G1. Let Vi = {v | f (v) = i} and Ti be an arbitrary evolutionary tree of Vi for 1 ≤ i ≤ p.
We construct an evolutionary tree T of V ∪ {x} as in figure 2. For any arc (u, v) ∈ A1,
since f (u) < f (v), the corresponding triple (u(xv)) in Y is compatible with T . Therefore
all triples corresponding to arcs in A1 are satisfied, and T compatible with |A| − k triples
in Y .

Conversely suppose that there is a tree T compatible with |A|−k triples in Y . Let Y1 be the
set of satisfied triples in Y . As in figure 2, let the path from root to x be (r1, r2, . . . , rp, x) and
Vi denote the set of leaves whose common ancestor with x is ri . For each triple (u(xv)) ∈ Y1

in which u ∈ Vi and v ∈ Vj , since lca(u, x) = lca(u, v) > lca(x, v), we have j > i . Let
A1 be the set of arcs corresponding to the triples in Y1, that is A1 = {(u, v) | (u(xv) ∈ Y1}.
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Figure 2. Transformation of an instance of the Feedback Arc Set problem into that of the MCTT problem. Left:
the labeling of a directed acyclic graph; Right: A maximum consensus tree of the MCTT problem.

Consider the graph G1 = (V, A1) and label each vertex v with i if v ∈ Vi . Since all the arcs
in A1 are from vertices with small labels to larger labels, G1 contains no directed cycle.
Therefore A\A1 is a feedback arc set of G and contains k arcs.

The above transformation reduces the Feedback Arc Set problem to the MCTT problem in
polynomial time. Since the Feedback Arc Set problem is NP-complete, the MCTT problem
is NP-hard.

3. Algorithms and experimental results

In this section, exact and heuristic algorithms will be presented. In the remaining of this
paper, Y is the set of the input triples over species set U . Let n and m be the cardinalities
of U and Y respectively.

3.1. An exact algorithm

In this subsection, we shall present an algorithm to find the exact solution of the MCTT
problem.

Definition 5. Let V ⊂ U , we use score(V ) to denote the maximum number of satisfiable
triples in {(a(bc)) | b, c ∈ V } ⊂ Y .

Definition 6. Let V ⊂ U , the set of all bipartitions of V is denoted by B(V ).

Definition 7. Let V ⊂ U and (V1, V2) ∈ B(V ). We use w(V1, V2) to denote the number
of triples (x(v1v2)) in which v1 ∈ V1, v2 ∈ V2 and x /∈ V .
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If we label each internal node of the tree by the set of leaves of the subtree rooted
at it, any internal node will be labelled by a subset of U , and the labels of its two
children form a bipartition of its label. For any V ⊂ U , once the scores of all its sub-
sets are found, we may compute score(V ) by trying all its possible bipartitions. The
exact algorithm uses the dynamic programming strategy and is based on the following
formula:

score(V ) = max
(V1,V2)∈B(V )

{score(V1) + score(V2) + w(V1, V2)} (1)

Obviously score(U ) is the maximum number of satisfiable triples in Y . The exact algo-
rithm is list below.

1. Algorithm Exact MCTT
2. Input: A set Y of rooted triples over species set U .
3. All triples are stored in a matrix M of lists.
4. M[i, j] is a list of the elements of set {x | (x(i j)) ∈ Y }.
5. Output: A rooted tree T satisfying maximum number of triples in Y .
6. Step 1: Compute the maximum number of satisfied triples.
7. For i = 1 to n do
8. For each subset V with cardinality i do
9. For each bipartition (V1, V2) of V do

10. Compute w(V1, V2) by counting the number of elements
11. in M[i, j]\V for each i ∈ V1 and j ∈ V2;
12. score(V ) = max{score(V1) + score(V2) + w(V1, V2)}, in which
13. the maximum is taken over all bipartitions of V .
14. Record the best bipartition of V at Partition(V ).
15. Step 2: Construct the tree by backtracking Partition(U ).
16. Start from V = U .
17. If V contains only one species, create a leaf node for it.
18. Otherwise recursively construct trees T1 and T2 for V1 and V2 respectively,
19. where (V1, V2) is the best bipartition of V recorded at Step 1.
20. Step 3: Output the tree.

Theorem 2. The algorithm Exact MCTT computes the maximum consensus tree from
rooted triples with time complexity O((m + n2)3n) and space O(2n).

Proof: The correctness of the algorithm is from Eq. (1). The algorithm computes the
scores of subsets with cardinalities from small to large. When computing the score of set
V , the scores of all its subsets have been found. The storage space used by the algorithms
is O(2n + m + n2), O(2n) for the scores and partitions of all subsets and O(m + n2) for the
triples. Since 2n is larger than m + n2, the space complexity is O(2n). For each bipartition
(V1, V2) of any subset, the time complexity for computing w(V1, V2) is no more than n2 + m
since there are totally m triples and O(n2) pairs (i, j) of species with i ∈ V1 and j ∈ V2.
Since there are 2k bipartitions for a set of cardinality k and there are ( n

k
) subsets of U with
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cardinality k, the time complexity is

(n2 + m)
n∑

k=1

2k

(
n

k

)
= (n2 + m)(1 + 2)n = (n2 + m)3n

3.2. Heuristic algorithms

In this subsection, we shall present heuristic algorithms for the MCTT problem. The heuristic
algorithms do not ensure the optimality of the found solutions but it runs in polynomial time.
The performance of the heuristics will be shown by comparing with the optimal solutions
found by the exact algorithm represented in the previous subsection.

Our heuristic algorithm Best-Pair-Merge-First works as follows: Initially there are n
subsets and each contains one of the species. The algorithms then repeatedly merge pair
of subsets until there is only one set left. But it is a question to determine the two subsets
to be merged at each iteration. We shall define a function e score(V1, V2) to evaluate the
score of merging sets V1 and V2. At each iteration, the algorithm chooses the two sets with
maximum evaluation score.

To evaluate the score, an intuitive method is to choose sets V1 and V2 with maximum
w(V1, V2). That is, we greedily merge two of the subsets such that the number of triples to
be satisfied is as many as possible. Besides the intuitive method, the following two points
were also considered and the scoring function is depends on two parameters if-penalty and
ratio-type.

• Merging two set not only satisfies some triples but also makes some triples unsatisfiable.
Precisely speaking, merging V1 and V2 satisfies the triples (x(i j)) but conflicts with the
triples (i(x j)) and ( j(xi)), where i ∈ V1, j ∈ V2 and x /∈ V1 ∪ V2. We define the penalty
p(V1, V2) as the number of triples conflicted by merging the two sets. When the input
parameter if-penalty is true, the algorithm uses w(V1, V2) − p(V1, V2) to select the two
sets to be merged. Otherwise only w(V1, V2) is considered.

• There may be bias to evaluate the subset pairs by the number of satisfied triples since
the distribution of the triples may be not uniform and the cardinalities of the subsets
are different while the program is running. Therefore it may be better to use relative
score than the number of satisfied triples. Two ratios were considered in our algorithm.
One is w(V1, V2)/(w(V1, V2)+ p(V1, V2)), and the other is w(V1, V2)/t(V1, V2), in which
t(V1, V2) is the total number of triples (x(v1v2)) for all v1 ∈ V1 and v2 ∈ V2. When the
penalty is considered, the numerator is replaced with w(V1, V2) − p(V1, V2) in either
ratio. A parameter ratio-type is used to determine which ratio will be used. If it is zero,
the algorithm does not use the relative ratio.

The two parameters give us six scoring functions. The performance of all the alternatives
were tested. The heuristic algorithm is list below. For different combinations of the two
parameter, the function e score is defined in Table 1.
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Table 1. The evaluation score e score(V1, V2) for combinations of parameters.

Ratio-type

if-penalty 0 1 2

False w(V1, V2) w(V1,V2)
w(V1,V2)+p(V1,V2)

w(V1,V2)
t(V1,V2)

True w(V1, V2) − p(V1, V2) w(V1,V2)−p(V1,V2)
w(V1,V2)+p(V1,V2)

w(V1,V2)−p(V1,V2)
t(V1,V2)

1. Algorithm Best-Pair-Merge-First(if-penalty, ratio-type)
2. Step 1: Initialization
3. Let T = {Ti | 1 ≤ i ≤ n}, in which Ti is the tree contains only one leaf i .
4. Step 2: Iteratively merging
5. While there are more than one trees in T do
6. Select two trees Ti and Tj in T such that e score(V (Ti ), V (Tj ))
7. is maximum, in which e score(V (Ti ), V (Tj )) depends on the
8. parameters if-penalty and ratio-type as defined in Table 1;
9. Merge Ti and Tj by adding an common ancestor and replace Ti and Tj

10. by the merged tree;
11. Step 3: Output the tree in T ;

3.3. GJLO’s heuristic algorithms

We also implemented the two heuristic algorithms proposed by Gasieniec et al. (1999) and
tested their performances. In this subsection, we briefly describe the algorithms, and the
experimental results are shown in the next subsection. The two algorithms are called GJLO1
and GJLO2.

While Algorithm Best-Pair-Merge-First using a bottom-up strategy, both GJLO1 and
GJLO2 construct the tree by recursively top-down splitting. Initially there is only one node
labelled by the set of all species. The algorithms find a bipartition of the set and split the
node into two children. Then the children are recursively splitted until every node contains
only one species. The difference between GJLO1 and GJLO2 is how to find the bipartition.

Algorithm GJLO1 always finds bipartitions of the form (V1, V2) in which V1 or V2 contains
only singleton. For each v ∈ V , it computes

|{(v(i j)) : i, j ∈ V }|
|{(i(v j)) : i, j ∈ V }|

as the score of v. By choosing the element x with maximum score, the set is bipartitioned into
({x}, V \{x}). Note that |{(v(i j))}| is the number of triples which satisfied by the bipartition,
and |{(i(v j))}| is the number of triples which conflict with the bipartition.

The way that Algorithm GJLO2 finds a bipartition of a set is to minimize the number
of conflicted triples. That is, Algorithm GJLO2 finds a bipartition (V1, V2) of a set V such
that p(V1, V2) is minimum, where p(V1, V2), as defined in the previous subsetion, is the
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number of triples conflicted with the bipartition. In our heuristics, we only need to compute
p(V1, V2) for given V1 and V2, since our algorithms use a bottom-up strategy. However,
Algorithm GJLO2 is to find the desired bipartition, and is therefore more complicated.
To partition a set V , construct an auxiliary graph G = (V, E, λ), where the edge weight
λ(i, j) = |{(v(i j)) : v ∈ V }| is the number of conflicted triples if i and j are partitioned into
different subsets. Obviously the desired bipartition can be found by computing the minimum
cut of the auxiliary graph. In the original paper, GJLO2 uses the techniques in Henzinger
et al. (1996) and Karger (1996) to reduce the time complexity for finding the minimum cut.
Since the time complexity is not our major concern and the number of species is not large in
our tests, we implemented the Ford and Fulkerson’s algorithm for the minimum cut (Ford
and Fulkerson, 1962; Liu, 1998).

3.4. The experimental results

3.4.1. The environment of the experiments. Both the exact and heuristic algorithms were
coded in ANSI C and ported on a personal computer equiped with Intel Pentium III-733
CPU and 64M bytes memory. The platform is Microsoft WIN32. The triples were generated
randomly over all species.

3.4.2. Running time. We tested the running time for the exact algorithm for n from 10
to 20. Since the algorithm uses the dynamic programming strategy. The running time does
not vary for different instances. For each n, three data instances were tested. The results are
shown in Table 2.

3.4.3. Error ratios. The performances of the heuristic algorithms are shown in the follow-
ing tables. Tables 3 and 4 show the worst ratios for different numbers of triples. For each
case, over 100 data were tested. The error ratio is obtained by opt(Y )/heu(A, Y ), where

Table 2. The running time for Algorithm Exact MCTT.

n 10 11 12 13 14 15 16 17 18 19 20

Time in sec. <1 1 2 9 30 104 366 1255 4322 14690 49923

Table 3. The worst error ratios for different numbers of triples with n = 10.

Without penalty With penalty
if-penalty

ratio-type 0 1 2 0 1 2 BPMF GJLO1 GJLO2

m = 60 1.650 1.276 1.619 1.240 1.276 1.360 1.192 1.440 1.737

m = 80 1.464 1.206 1.615 1.188 1.206 1.464 1.182 1.303 1.593

m = 100 1.400 1.179 1.621 1.225 1.179 1.265 1.150 1.257 1.667

m = 120 1.514 1.256 1.556 1.256 1.256 1.343 1.136 1.227 1.583
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Table 4. The worst error ratios for different numbers of triples with n = 15.

Without penalty With penalty
if-penalty

ratio-type 0 1 2 0 1 2 BPMF GJLO1 GJLO2

m = 100 1.450 1.208 1.657 1.191 1.208 1.250 1.191 1.283 1.595

m = 200 1.373 1.200 1.507 1.186 1.200 1.200 1.141 1.238 1.365

m = 300 1.365 1.159 1.467 1.196 1.159 1.159 1.126 1.218 1.387

opt(Y ) is the maximum number of satisfiable triples in Y and heu(A, Y ) is the number of
triples satisfied by the tree found by heuristic algorithm A. The column labeled by BPMF
shows the results for the algorithm which runs all the six heuristics and chooses the best
for each data instance. Tables 5 and 6 show the average and worst ratios in the tests for
different number of species. The number of the tested data is 1200 for n = 10, and 300 for
n = 12, 15, and 30 for n = 18, and 35 for n = 20. Table 7 shows the ratio (in percentage)
of the instances that BPMF performed better than GJLO and vice versa, in which GJLO
is to run both GJLO1 and GJLO2 and to choose the better result for each data instance.
For example, in our tests with n = 10, BPMF got better results than the ones by GJLO
on 69.5% of the data instances, while GJLO is better than BPMF on only 16.1% of the
instances. Note that, on the remaining 14.4% of the instances, the two algorithms tied.

Table 5. The average error ratios for different numbers of species.

Without penalty With penalty
if-penalty

ratio-type 0 1 2 0 1 2 BPMF GJLO1 GJLO2

n = 10 1.176 1.068 1.245 1.070 1.068 1.086 1.054 1.106 1.210

n = 12 1.208 1.086 1.272 1.090 1.086 1.103 1.069 1.122 1.232

n = 15 1.210 1.086 1.269 1.093 1.086 1.098 1.071 1.122 1.218

n = 18 1.210 1.098 1.268 1.101 1.098 1.114 1.082 1.118 1.223

n = 20 1.228 1.109 1.306 1.104 1.109 1.121 1.085 1.146 1.242

Table 6. The worst error ratios for different numbers of species.

Without penalty With penalty
if-penalty

ratio-type 0 1 2 0 1 2 BPMF GJLO1 GJLO2

n = 10 1.650 1.276 1.621 1.256 1.276 1.464 1.192 1.440 1.737

n = 12 1.630 1.280 2.000 1.231 1.280 1.292 1.200 1.375 2.615

n = 15 1.450 1.208 1.657 1.196 1.208 1.250 1.191 1.283 1.595

n = 18 1.348 1.235 1.500 1.170 1.235 1.286 1.127 1.265 1.455

n = 20 1.373 1.208 1.571 1.167 1.208 1.208 1.139 1.314 1.535
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Table 7. The comparison between BPMF and GJLO.

Number of species

Algorithm 10 (%) 12 (%) 15 (%) 18 (%) 20 (%)

BPMF is better 69.5 70.0 80.0 73.3 74.3

GJLO is better 16.1 16.7 15.3 20.0 20.0

4. Discussion

In the following paragraphs, the heuristics will be referred as BPMF (p1,p2), in which the p1

and p2 are the input parameters. By the results of experiments, we observed the following:

• By the results of individual data instances (not shown in the paper), we found that no
one of the eight heuristics (including 6 alternatives of BPMF, GJLO1, and GJLO2) is
absolutely better than another. For each of them, there exist some instances that it finds
better solutions than all the others. This is also the reason why the heuristic BPMF
performs better than all the others.

• The error ratios are not sensitive to either the number of input triples or the number of
species.

• Taking penalty into consideration improves the performance significantly. Note that the
evaluation score of BPMF (no-penalty, ratio-type = 1) in fact involves the penalty.

• Heuristics BPMF (no-penalty, ratio-type=1) and BPMF (penalty, ratio-type=1) perform
very similarly. In over thousands of tests, there are only few cases that the scores of their
outputs are different.

• BPMF performed better than GJLO on about 70% of the data instances.

We make some remarks as the conclusion. In most of the applications, the solution quality
is the major concern. Therefore, for small data instances, the exact algorithm should be used.
For large data instances, we propose the heuristic BPMF since it takes the advantages of
the six heuristics and runs in polynomial time. Furthermore, combining BPMF with GJLO
may give us even better solutions. For example, in our tests with n = 15, the worst error
ratio of the combined algorithm is 1.157, while the ratios of BPMF, GJLO1 and GJLO are
1.191, 1.283 and 1.595 respectively. When the running time is an important factor, any one
of the heuristics with penalty considered may be a good choice.

In the exact algorithm presented in Section 3, we need to compute and keep the scores
of all subsets. The time complexity is therefore exponential. While computing the subsets
of some cardinality, if we keep only certain, but not all, subsets, we may have an algorithm
which is adaptable in the computational time and the solution quality. It may be a good
direction of future researches.

There are also some open problems. We show the performances of the heuristics by
experiments. It is interesting to give a theoretic analysis of the performance. The computa-
tional complexity of the MCTT problem is shown in this paper, but the approximability is
still open.
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