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Abstract

Let G = (V; E; w) be an undirected graph with positive edge lengths and S ⊂ V a set of k speci0ed sources. The
k-source maximum eccentricity spanning tree is a spanning tree T minimizing the maximum distance from a source to a
vertex, i.e., maxs∈S {maxv∈V{dT (s; v)}}, where dT (s; v) is the length of the path between s and v in T . In this paper, we
propose an O(|V |2 log |V | + |V | |E|) time algorithm, which improves the previous result on the problem.
c© 2003 Elsevier B.V. All rights reserved.

Keywords: Algorithms; Network design; Spanning trees; Optimization problems

1. Introduction

An important family of problems in network design is to 0nd spanning trees with small source-to-destination distances.
Two natural objective functions are used to measure the goodness of spanning trees: min–sum and min–max. Let G =
(V; E; w) be an undirected graph with positive length function w on edges and S ⊂ V a set of k speci0ed sources,
16 k6 |V |. The k-source minimum routing cost spanning tree (k-MRCT), or k-source shortest path spanning tree
(k-SPST), is the spanning tree T minimizing

∑
s∈S

∑
v∈V dT (s; v), where dT (s; v) is the length of the path between s

and v in T . While the k-MRCT problem de0ned by a min–sum objective function, the k-source maximum eccentricity
spanning tree (k-MEST) problem is de0ned by a min–max objective function, and the goal is to 0nd a spanning tree T
minimizing maxs∈S {maxv∈V {dT (s; v)}}.

If there is only one source, both the two problems can be solved by 0nding the shortest-path tree, a spanning tree in
which the path between the source and each vertex is a shortest path on the given graph. The shortest-path tree problem
has been well studied and e>cient algorithms were developed. For example, Dijkstra’s algorithm [3] 0nds a shortest path
tree for a graph with non-negative weights in O(|V |2) time. The time complexity can be improved to O(|E|+ |V | log |V |)
by using Fibonacci heaps, and other algorithms with diCerent considerations can be found in [2]. For undirected graph
with positive integer weights, the most e>cient algorithm runs in O(|E|) time [10].

When there are more than one sources, the k-MRCT and k-MEST problems are of diCerent complexities. The k-MRCT
problem is a generalization of the MRCT problem (also called the shortest total path length spanning tree problem,
[ND3] in [5]), in which all vertices are sources. The MRCT problem is NP-hard [5,7] and admits a polynomial time
approximation scheme (PTAS) [13,16]. The k-MRCT problem for general k is obviously NP-hard since it includes the
MRCT problem as a special case. But the NP-hardness of MRCT does not imply the complexity of the k-MRCT problem
for a 0xed constant k. The 2-MRCT problem has been shown to be NP-hard in [4,11]. Recently, the k-MRCT problem
for any constant k has been shown to be also NP-hard [12].
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The optimum communication spanning tree (OCT) problem [6] ([ND7] in [5]) is a more general version of the
MRCT problem. In the OCT problem, in addition to the edge length, we are also given the requirement for each pair of
vertices, and the goal is to minimize the sum of the distances multiplied by the requirements, over all pairs of vertices.
Approximation algorithms for OCT problem with some restricted requirements were studied [14,15]. One of the restricted
OCT problem is the optimal sum-requirement communication spanning tree (SROCT) problem, in which each vertex has
a non-negative weight and the requirement between two vertices is the sum of their weights. A 2-approximation algorithm
for the SROCT problem was shown [14]. The k-MRCT problem can be thought of as a special case of the SROCT
problem by setting each source of weight one and all the other vertices of weight zero. Therefore the 2-approximation
algorithm for the SROCT problem ensures the same approximation ratio of the k-MRCT. For k =2, Farley et al. showed
another 2-approximation algorithm [4], and the algorithm was independently discovered and generalized to a PTAS [11].
For any �¿ 0, the PTAS 0nds a solution with approximation ratio 1 + � in O(n�1=�+1�) time.

In this paper, we focus on the k-MEST problem. It was shown that the problem can be solved in pseudo-polynomial time
[4]. Although the algorithm is exponential for general cases, an important observation about the structure of an optimal tree
was pointed out in their paper. Recently, McMahan and Proskurowski [9] presented an O(|V |3 + |E| |V | log |V |) algorithm
based on that observation. In [8], Krumme and Fragopoulou presented another algorithm which runs in O(|V |3 + |E| |V |)
time and works for arbitrarily given source and destination sets. In this paper, we propose an O(|V |2 log |V | + |E| |V |)
algorithm for the problem. Although the method is similar to that in [8], our algorithm was developed independently and
seems easier to understand.

The remaining sections are organized as follows: in Section 2, we de0ne some notations and show some results about
the central edge, which plays an important role in our algorithm. First we present an algorithm for the k-MEST of a
metric graph in Section 3, and then generalize the algorithm to general graphs in Section 4, where a metric graph is a
complete graph with triangle inequality. Finally concluding remarks are in Section 5.

2. Preliminaries

In this paper, a graph is a simple, connected and undirected graph. By G = (V; E; w), we denote a graph G with
vertex set V , edge set E, and positive edge length function w. For any graph G, V (G) denotes its vertex set and E(G)
denotes its edge set. For two vertices u and v, the shortest path length in the input graph is denoted by d(u; v). For a
tree T , dT (u; v) is the length of the unique simple path between the two vertices. A vertex in a tree is a leaf if it is
incident to only one edge, and a non-leaf vertex is called as an internal node (vertex). For v∈V and U ⊂ V , de0ne
D(v; U ) = maxu∈U{d(v; u)} the maximum of shortest path length from vertex v to any vertex in U . For a spanning tree
T , the de0nition of DT (v; U ) is similar except that the distance is on the tree T . The set of source vertices is denoted by
S, and we assume |S| = k ¿ 1. For Vi ⊂ V , 16 i6 2, we use Si to denote S ∩ Vi the set of sources in Vi.

We now de0ne the eccentricity and the k-MEST formally.

De�nition 1. Let T be a tree and S ⊂ V (T ) the set of sources. The maximum eccentricity of T , denoted by c(T ), is
the maximum distance from a source to a vertex, i.e., c(T ) = maxs∈S{maxv∈V{dT (s; v)}}, or c(T ) = maxv∈V{DT (v; S)}
equivalently. Given a graph G = (V; E; w) and a set of k sources S ⊂ V , the k-MEST problem is to 0nd a spanning tree
T with minimum c(T ) among all possible spanning trees.

A crucial observation is the existence of a central edge de0ned below:

De�nition 2. Let T be a tree and q = maxs1 ;s2∈S{dT (s1; s2)} the maximum of intra-source distances on T . An edge
(m1; m2)∈E(T ) is a central edge if min{dT (s; m1); dT (s; m2)}6 q=2 for any s∈ S and (m1; m2) is contained in a longest
intra-source path.

The central edge is not unique if and only if there exists a vertex which is the midpoint of all longest intra-source
paths.

Lemma 1. Let T be a spanning tree of G = (V; E; w) and (m1; m2)∈E(T ). Let T1 and T2 be the two trees obtained by
removing (m1; m2) from T and m1 ∈V (T1). Let Si = V (Ti) ∩ S for i = 1; 2. The edge (m1; m2) is a central edge of T if
and only if both S1 and S2 are not empty and

|DT (m1; S1) − DT (m2; S2)|6w(m1; m2):
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Proof. Let q be the maximum of intra-source distance in T , and let Di =DT (mi; Si) for i= 1; 2. Suppose that (m1; m2) is
a central edge. By de0nition, both S1 and S2 are not empty and Di6 q=2 for i=1; 2. Since D1 +D2 +w(m1; m2) = q, we
have

D1 + w(m1; m2)¿ q=2¿D2;

and

D2 + w(m1; m2)¿ q=2¿D1:

Consequently we obtain

|D1 − D2|6w(m1; m2):

Conversely suppose that both S1 and S2 are not empty and |D1 − D2|6w(m1; m2). Without loss of the generality,
we assume that D1¿D2. Since D16D2 + w(m1; m2) and D1 + D2 + w(m1; m2)6 q, we obtain D16 q=2. By de0nition,
DT (mi; Si) is the maximum distance from any source in Si to mi. We have that min{dT (s; m1); dT (s; m2)}6 q=2 for any
s∈ S. To conclude that (m1; m2) is a central edge, we shall show that D1 +D2 +w(m1; m2)= q. By the triangle inequality,
dT (s1; m1)+dT (s2; m1)¿dT (s1; s2) for any s1; s2 ∈ S1. We have 2D1¿maxs1 ;s2∈S1{dT (s1; s2)}. Since D16D2+w(m1; m2),

D1 + D2 + w(m1; m2)¿ max
s1 ; s2∈S1

{dT (s1; s2)}:

Similarly we can show that

D1 + D2 + w(m1; m2)¿ max
s1 ; s2∈S2

{dT (s1; s2)}:

By de0nition, D1 + D2 + w(m1; m2) is the maximum distance between a source in S1 and a source in S2. Therefore

D1 + D2 + w(m1; m2)¿ max
s1 ; s2∈S

{dT (s1; s2)} = q:

Lemma 2. If (m1; m2) is a central edge of T ,

c(T ) = w(m1; m2) + max{DT (m1; S1) + DT (m2; V2); DT (m2; S2) + DT (m1; V1)}
in which V1 and V2 are the vertex sets of T1 and T2 (de9ned in Lemma 1), respectively.

Proof. By Lemma 1, DT (m1; S1)6DT (m2; S2) +w(m1; m2), which implies that the furthest source to m1 is in S2. Conse-
quently, for any vertex v∈V1,

max
s∈S

{dT (v; s)} =max
s∈S2

{dT (v; s)}

= dT (v; m1) + w(m1; m2) + DT (m2; S2):

Taking the maximum over all vertices in V1, we have

max
v∈V1

{
max
s∈S

{dT (v; s)}
}
= DT (m1; V1) + w(m1; m2) + DT (m2; S2):

Similarly,

max
v∈V2

{
max
s∈S

{dT (v; s)}
}
= DT (m2; V2) + w(m1; m2) + DT (m1; S1):

The result follows the de0nition of c(T ).

3. On metric graphs

In this section, we consider the k-MEST problem on metric graphs. A metric graph G = (V; E; w) is a complete graph
with w(u; v) = d(u; v) for any u; v∈V , i.e., any edge is a shortest path between its two endpoints.

De�nition 3. A 2-star is a tree with at most two internal nodes. In the case of two internal nodes, the edge between the
two internal nodes is the unique central edge of the tree.

Lemma 3. For a metric graph, there exists a k-MEST T which is a 2-star.
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Proof. Let Y be a k-MEST of a metric graph G and (m1; m2) be a central edge of Y . Let V1 and V2 be the vertex sets
of the two components resulted by removing (m1; m2) from Y and m1 ∈V1. By Lemma 2,

c(Y ) = w(m1; m2) + max{DY (m1; S1) + DY (m2; V2); DY (m2; S2) + DY (m1; V1)}:
We consider three cases.

Case 1: D(m1; S1)+w(m1; m2)¡D(m2; S2). We construct T by connecting all vertices to m2, i.e., T is the star centered
at m2. Since

D(m2; S1)6D(m1; S1) + w(m1; m2)¡D(m2; S2);

we have D(m2; S) = D(m2; S2). Let s∈ S2 the furthest source to m2, i.e., d(s; m2) = D(m2; S). For any v∈V1,

dT (v; s) = d(v; m2) + d(m2; s)6dY (v; s)6 c(Y ):

For any vertex v∈V2, since (m1; m2) is a central edge of Y , d(m2; s)6dY (m2; s)6DY (m2; S1). We have

dT (v; s) = d(v; m2) + d(m2; s)

6 d(v; m2) + DY (m2; S1)

6 DY (v; S1)6 c(Y ):

Since T is a star,

c(T ) = d(m2; s) + max{D(m2; V1); D(m2; V2)}6 c(Y ):

By de0nition, a star is also a 2-star, and therefore T is the desired k-MEST and (m2; s) is its central edge.
Case 2: D(m2; S2) + w(m1; m2)¡D(m1; S1). The case is similar, and the desired tree is the star centered at m1.
Case 3: |D(m1; S1) − D(m2; S2)|6w(m1; m2). We construct a spanning tree T as follows. For all vertices in V1, we

construct a star centered at m1, and similarly construct a star centered at m2 for all vertices in V2. Then we connect the
two stars into a tree T by inserting edge (m1; m2). By Lemma 1, the edge (m1; m2) is also a central edge of T . Since G
is a metric graph, by Lemma 2,

c(T ) = w(m1; m2) + max{D(m1; S1) + D(m2; V2); D(m2; S2) + D(m1; V1)}
6 w(m1; m2) + max{DY (m1; S1) + DY (m2; V2); DY (m2; S2) + DY (m1; V1)}
= c(Y ):

In order to 0nd a k-MEST, our algorithm tries all the edges. For each edge (m1; m2), we 0nd the best 2-star with (m1; m2)
as its central edge. For speci0ed central edge, a 2-star is determined by the vertex partition (V1; V2), in which V1 and V2

are the vertex sets of the two components obtained by removing the central edge. We shall focus on how to 0nd the best
bipartition. De0ne a cost function on any partition (V1; V2) of V

C(V1; V2) = max{D(m1; S1) + D(m2; V2); D(m2; S2) + D(m1; V1)}:
By Lemmas 2 and 3, it is su>cient to 0nd (V1; V2) minimizing C(V1; V2) subject to |D(m1; S1)−D(m2; S2))|6w(m1; m2)
and Si 	= ∅ for i = 1; 2.

First we focus on the partitions of S. De0ne the xy-pair of a bipartition (S1; S2) of S to be the ordered pair (x; y) in
which x = D(m1; S1) and y = D(m2; S2). Since any source is in either S1 or S2, the next fact is trivial.

Fact 4. If (x; y) is a xy-pair, there is no source s with d(s; m1)¿x and d(s; m2)¿y simultaneously.

Let P = {(d(s1; m1); d(s2; m2))|s1; s2 ∈ S}. There are at most k2 diCerent xy-pairs among the 2k bipartitions. However,
to minimize the cost, not all possible pairs need to be considered.

De�nition 4. An xy-pair (x; y) is minimal if
(1) for any other (x1; y1)∈P, x1¿x or y1¿y; and
(2) there exists a source s with d(s; m1) = x and d(s; m2)¿y.

Obviously, to minimize the cost, a pair (x; y) is useless if there exists another pair (x1; y1) such that x16 x and y16 y.
Let (V1; V2) be a bipartition of V . If there exists a source s∈V1 with d(s; m2)6D(m2; S2), we can move s from S1 to
S2 without increasing the maximum eccentricity of the tree. Therefore, we only need to consider the minimal xy-pairs.
Clearly there are at most (k − 1) minimal xy-pairs since there are at most k diCerent x-values.



346 B. Ye Wu /Discrete Applied Mathematics 143 (2004) 342–350

a(i,j)

a(i,j+1)
b(i,j)

b(i,j+1)

fi

bi

ai

ai+1

bi+1

Fig. 1. a(i; j), b(i; j), and f(i; j) (bold line).

Let Ls be the list of all minimal pairs (xi; yi) satisfying |xi − yi|6w(m1; m2), where all xi are in increasing order and
all yi are in decreasing order. The next lemma shows that Ls can be constructed e>ciently.

Lemma 5. Given the sorted distances from sources to m1, the list Ls can be constructed in O(k) time.

Proof. Let S={si|16 i6 k} and d(m1; si)6d(m1; si+1) for 16 i ¡ k. Let L be the list of (xi; yi), in which xi=d(m1; si)
and yi =maxj¿i{d(sj; m2)} for 16 i ¡ k. By de0nition and Fact 4, Ls is a subsequence of L. Since

yi =max{yi+1; d(si+1; m2)};
starting with yk−1 = d(sk ; m2), the list L can be constructed in linear time. Then the desired list Ls can be obtained by
removing the non-minimal pairs and the pairs with |xi − yi|¿w(m1; m2). The time complexity is O(k).

Let U = V \ S and (U1; U2) be the projection of a partition (V1; V2) of V onto U , i.e., U1 =U ∩ V1 and U2 =U ∩ V2.
De0ne the pq-pair of (U1; U2) to be the ordered pair (p; q) in which p=D(m1; U1) and q=D(m2; U2). Similar to Lemma
5, the sorted list Lu of all minimal pq-pairs (pi; qi) can be constructed in O(|U |) time. For convenience, we reverse the
list so that all qi’s are in increasing order and all pi’s are in decreasing order.
De0ne a(i; j)= xi + qj , b(i; j)= yi +pj and f(i; j)=max{a(i; j); b(i; j)}. The goal is to 0nd the minimum of f′(i; j)=

max{f(i; j); xi +yi}, which is exactly the minimum of C(V1; V2). De0ne ai(j)= a(i; j), bi(j)= b(i; j), and fi(j)=f(i; j)
for some 0xed i. Our algorithm computes the minimum of fi(j) for each i, and the minimum of f′(i; j) can be obtained
directly. We observe the following:

Fact 6. The function a(i; j) is monotonically increasing for both i and j, and b(i; j) is monotonically decreasing for both
i and j.

The function ai is monotonically increasing and bi is monotonically decreasing. As a consequence, fi is bitonic:
monotonically decreasing and then monotonically increasing (Fig. 1). Suppose that fi achieves its minimum at j. It is
easy to show that ai dominates bi at the right side of j and bi dominates ai at the left side. For the completeness, we
give a formal proof.

Fact 7. If fi achieves its minimum at j, bi(j + 1)¡ai(j + 1) and ai(j − 1)¡bi(j − 1).

Proof. Since fi achieves its minimum at j, we have

fi(j)6 fi(j + 1)

max{ai(j); bi(j)}6max{ai(j + 1); bi(j + 1)}
bi(j)6max{ai(j + 1); bi(j + 1)}:
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However, bi(j + 1)¡bi(j) since bi is monotonically decreasing, and we have

bi(j + 1)¡ai(j + 1)

The other part can be shown similarly.

By the above fact, the minimum of fi can be found by a method similar to the binary search. The time complexity
for 0nding the minimum of f(i; j) is O(|V | + k log |V |). However, the complexity is O(|V | log |V |) for large k. In the
following, we shall show how to reduce the complexity to O(|V |). The key point is stated in the next lemma.

Lemma 8. If fi and fi+1 achieve their minima at j and j′, respectively, then j′6 j.

Proof. Since fi achieve its minimum at j, fi(j)6fi(j + 1). By de0nition and Fact 7,

max{a(i; j); b(i; j)}6max{a(i; j + 1); b(i; j + 1)} = a(i; j + 1):

We have b(i; j)6 a(i; j + 1). Since b(i + 1; j)¡b(i; j) and a(i; j + 1)¡a(i + 1; j + 1), we obtain

b(i + 1; j)¡a(i + 1; j + 1):

Since a(i + 1; j)¡a(i + 1; j + 1),

fi+1(j) = max{a(i + 1; j); b(i + 1; j)}
¡a(i + 1; j + 1)

6max{a(i + 1; j + 1); b(i + 1; j + 1)} = fi+1(j + 1):

We have shown that fi+1(j)¡fi+1(j + 1). Since fi+1 is bitonic, the result follows.

Lemma 9. Given Ls and Lu, the minimum of f′(i; j) can be computed in O(|V |) time.

Proof. Let fi achieve its minimum at ji. By Lemma 8, we have ji¿ ji+1 for each i. Starting at j0 = |Lu|, we compute
f1(j0); f1(j0 − 1); : : : until we 0nd f1(j− 1)¿f1(j) for some j. Since f1 is bitonic, j1 = j. Once j1 is found, j2 can be
determined similarly but we start at j = j1 instead of j0. Obviously all the minima can be found in totally O(|V |) time.
Finally the minimum of f′(i; j) is given by mini{max{fi(ji); xi + yi}} and can be also obtained in O(|V |) time.

Our algorithm for k-MEST of a metric graph is stated below:

Algorithm A1.

Input: A metric graph G = (V; E; w) and S ⊂ V .
Output: A spanning tree T of G.
1. For each vertex v, sort the distances from v to all others.
2. For each edge (m1; m2) do
2.1. Compute the sorted list Ls of the minimal xy-pairs.
2.2. Compute the sorted list Lu of the minimal pq-pairs.
2.3. Find i∗ and j∗ minimizing f′(i; j).
2.4. Let cost(m1; m2) = w(m1; m2) + f′(i∗; j∗).
3. Let (m1; m2) and i and j minimize the cost at Step 2.
3.1. Construct V1 = {s|s∈ S; d(s; m1)6 xi} ∪ {v|v 	∈ S; d(v; m1)6pj}.
3.2. Construct V2 = V \ V1.
3.3. E(T ) = {(m1; m2)} ∪ {(v; m1)|v∈V1} ∪ {(v; m2)|v∈V2}.

Theorem 10. The k-MEST problem for a metric graph G = (V; E; w) can be solved in O(|V |2 log |V | + |V | |E|) time.

Proof. The correctness of the algorithm follows Lemma 3. The 0rst step takes O(|V |2 log |V |) time. For each edge
(m1; m2)∈E(G), by Lemmas 5 and 9, Steps 2.1–2.4 take O(|V |) time. Constructing the tree at Step 3 takes O(|V |) time.
Therefore the time complexity is O(|V |2 log |V | + |V | |E|).
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4. On general graphs

In this section, we generalize the algorithm to the case of general graphs. For a given general graph G, we 0rst compute
the all-pair shortest path lengths, and then 0nd the k-MEST of the metric closure (de0ned later) of G. Finally we construct
a spanning tree of G with the same eccentricity.

De�nition 5. Let G = (V; E; w) be a graph. The metric closure, denoted by OG = (V; OE; Ow), is a complete graph in which
the length of an edge is the shortest path length of the two endpoints on G, i.e., Ow(u; v) = d(u; v) for each u; v∈V .

The next corollary is derived from Lemma 3.

Corollary 11. Let OG be the metric closure of a graph G = (V; E; w). There exists a k-MEST T of OG such that T is a
2-star and T has a central edge (m1; m2) with w(m1; m2) = d(m1; m2).

Proof. By Lemma 3, there exists such a k-MEST T with central edge (m1; m2) except that the central edge may be not
in E or w(m1; m2)¿d(m1; m2). For both cases, we transform T into Y by replacing the central edge with a shortest path
P between the two endpoints. Clearly c(Y )=C(T ) since the eccentricity does not increase and T is optimal. Furthermore
there exists a longest intra-source path containing P and its length remains the same. Otherwise T is not optimal. Therefore
we can 0nd an edge of P which is a central edge of Y . Since P is a shortest path on G, w(u; v) = d(u; v) for each edge
(u; v)∈E(P). Using the same procedure in the proof of Lemma 3, we can construct the desired k-MEST.

Our algorithm is in the following.

Algorithm A2.

Input: A graph G = (V; E; w) and S ⊂ V .
Output: A spanning tree T of G.
1. Construct the metric closure OG = (V; OE; Ow) of G.
2. For each vertex v, sort the distances from v to all others.
3. For each edge (m1; m2)∈E do
3.1. Find i∗ and j∗ minimizing f′(i; j).
3.2. Compute cost(m1; m2) = w(m1; m2) + f′(i∗; j∗).
4. Let (m1; m2) and i and j minimize the cost at Step 3.
4.1. Partition V into V1 and V2 such that V1 contains m1 and all vertices

v with d(v; m1) − d(v; m2)6 xi − yi.
4.2. On G, construct a shortest path tree T1 rooted at m1 and spanning V1.
4.3. On G, construct a shortest path tree T2 rooted at m2 and spanning V2.
4.4. E(T ) = E(T1) ∪ E(T2) ∪ {(m1; m2)}.

First we show the validity of the tree T1 and T2 constructed at Steps 4.2 and 4.3. The next two lemmas are su>cient.

Lemma 12. At Step 4, m1 ∈V1, and V2 = ∅ if m2 ∈V1.

Proof. Since (xi; yi)∈ Ls, |xi − yi|6w(m1; m2). We have

xi − yi¿− w(m1; m2) = d(m1; m1) − d(m1; m2);

and therefore m1 ∈V1.
Suppose that m2 ∈V1. By the de0nition of V1, we have

d(m2; m1) − d(m2; m2) = w(m1; m2)6 xi − yi:

However, xi−yi6w(m1; m2), and consequently xi−yi=w(m1; m2). By triangle inequality, d(v; m1)6d(v; m2)+w(m1; m2)
for any vertex v, and we obtain

d(v; m1) − d(v; m2)6w(m1; m2) = xi − yi:

Therefore all vertices are in V1 and V2 = ∅.
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Lemma 13. Any shortest path P from a vertex v∈V1 to m1 contains no vertex in V2. Similarly, any shortest path from
a vertex in V2 to m2 contains no vertex in V1.

Proof. We show the 0rst part, and the other one can be shown similarly. Suppose that there exists a vertex u∈V2 ∩V (P).
By de0nition, d(u; m1)−d(u; m2)¿xi−yi. However, since u∈V (P) and P is a shortest path, d(v; m1)=d(v; u)+d(u; m1).
We have

(d(u; m1) + d(u; v)) − (d(u; m2) + d(u; v))¿xi − yi;

d(v; m1) − (d(u; m2) + d(u; v))¿xi − yi;

d(v; m1) − d(v; m2)¿xi − yi;

since d(v; m2)6d(u; m2) + d(u; v). It implies that v is in V2, a contradiction.

Now we show that T is optimal.

Lemma 14. c(T )6 cost(m1; m2).

Proof. In the case that V2 = ∅, m1 is the midpoint of the longest intra-source path, and T is a shortest path tree rooted at
m1. It is easy to show that c(T )6 cost(m1; m2) since, for any vertex, the distance to the furthest source does not increase.
In the following, we assume that V2 	= ∅.
Since (xi; yi) is a minimal pair in Ls, there exists a source s with d(s; m1) = xi and d(s; m2)¿yi. By the de0nition

of V1, we have that s∈V1, which implies that D(m1; S1)¿ xi. Suppose that there is a source s1 ∈V1 with d(s1; m1)¿xi.
Since d(s1; m1) − d(s1; m2)6 xi − yi, we have

d(s1; m2)¿ yi + (d(s1; m1) − xi)¿yi;

a contradiction to Fact 4. Consequently D(m1; S1) = xi. Similarly we can show that D(m2; S2) = yi.
By the de0nition of Ls, |xi−yi|6 Ow(m1; m2)=w(m1; m2). Since T1 and T2 are shortest path trees, we have |DT (m1; S1)−

DT (m2; S2)|6w(m1; m2) and conclude that (m1; m2) is a central edge of T by Lemma 1.
By de0nition, cost(m1; m2) = w(m1; m2) + max{f(i; j); xi + yi}. We consider two cases.
Case 1: xi + yi¿f(i; j). It implies that there is no vertex v with d(v; m1)¿xi and d(v; m2)¿yi simultaneously. For

v∈V1, if d(v; m1)¿xi, by the de0nition of V1,

d(v; m1) − d(v; m2)6 xi − yi;

d(v; m2)¿d(v; m1) − xi + yi ¿yi:

It is a contradiction, and therefore D(m1; V1) = xi. Similarly D(m2; V2) = yi, and we have c(T ) = cost(m1; m2).
Case 2: cost(m1; m2)=w(m1; m2)+f(i; j). Recall that f(i; j)=max{xi+ qj; yi+pj}. Let U =V \ S and Ui=Vi \ Si for

i=1; 2. Since (pj; qj) is a minimal pair in Lu, there is no vertex u∈U with d(u; m1)¿pj and d(u; m2)¿qj simultaneously.
For any u∈U1, if d(u; m1)6pj , we have

d(u; m1) + yi6pj + yi6f(i; j):

Otherwise, d(u; m2)6 qj . Since u∈U1,

d(u; m1) + yi6 xi + d(u; m2)

6 xi + qj6f(i; j):

Consequently, d(u; m1) + yi6f(i; j) for any u∈U1, and therefore DT (U1; m1) + yi6f(i; j). Similarly we can show that
DT (U2; m2) + xi6f(i; j). Since (m1; m2) is a central edge of T ,

c(T ) = w(m1; m2) + max{DT (m1; U1) + yi; DT (m2; U2) + xi}
6 w(m1; m2) + f(i; j)

= cost(m1; m2):

By de0nition, any spanning tree of a graph is also a spanning tree of its metric closure. Since cost(m1; m2) is the
minimum of the maximum eccentricity of any spanning tree of OG, we have cost(m1; m2)6 c(T ), and the next corollary
follows Lemma 14.



350 B. Ye Wu /Discrete Applied Mathematics 143 (2004) 342–350

Corollary 15. c(T ) = cost(m1; m2).

Corollary 16. Let T be a k-MEST of a graph G. If Y is a k-MEST of the metric closure OG, c(Y ) = c(T ).

Theorem 17. The k-MEST problem for a graph G = (V; E; w) can be solved in O(|V |2 log |V | + |V | |E|) time.

Proof. The correctness of the algorithm follows Lemmas 13, 14, and Corollary 16. To compute the all-pair shortest path
lengths, it takes O(|V |2 log |V | + |V | |E|) time for Step 1 [2]. Step 2 takes O(|V |2 log |V |) time for sorting. Step 3 takes
O(|V |) time for each edge of G, and therefore O(|V | |E|) time in total. Finally constructing the tree can be done in
O(|V | log |V | + |E|) time. In summary, the time complexity is O(|V |2 log |V | + |V | |E|).

5. Concluding remarks

In this paper, we present an algorithm for the k-MEST with time complexity O(|V |2 log |V | + |V | |E|), which is more
e>cient than the previous algorithms for general graphs. Besides the k-MRCT and the k-MEST problems, some other cost
metrics for the multi-source spanning trees were discussed recently [1]. E>cient algorithms or approximation algorithms
for those problems may be an interesting future work.
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