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In this paper, we propose a new heuristic algorithm for the maximum consensus 

tree of rooted triples. By means of the experimental results, we show that the algorithm 
is better than the three previous heuristics and runs in a reasonable amount of time. Fur-
thermore, using the algorithm, it is possible to achieve a trade-off between the running 
time and the quality of the solution. 

We also investigate the computational complexity of the maximum compatible set 
problem. We show that it is NP-hard to find the maximum vertex set compatible with 
given rooted triples. 

 

Keywords: computational biology, evolutionary tree, heuristic algorithm, NP-hard, con-
sensus tree 

1. INTRODUCTION 

Evolutionary trees are used to present the relationships among a set of species. An 
evolutionary tree is a rooted tree, in which each of the leaves corresponds to one species, 
and each of the internal nodes is the inferred common ancestor of the species in the sub-
tree. Constructing evolutionary trees is an important problem in computational biology, 
and there are different approaches to it. A rooted triple, or simply triple for the sake of 
brevity, represents the relationship between three species. A triple (a(bc)) specifies lca(a, 
b) = lca(a, c) → lca(b, c), in which lca(a, b) is the lowest common ancestor of the two 
leaves and the relation → means “is an ancestor of”. We say that a tree satisfies a triple 
or that a triple is compatible with a tree if the relationship represented by the triple is 
satisfied in the tree. A triple set is compatible if there exists a tree that satisfies all the 
triples in the set, and this tree is called as the exact consensus tree. 

Given a set of triples, the existence of an exact consensus tree can be determined in 
polynomial time. For a set of constraints of the form lca(a, b) → lca(c, d), the algorithm 
developed in [1] can determine if there is a tree satisfying all the constraints , and it finds 
such a tree if it exists. A triple (a(bc)) is equivalent to lca(a, c) → lca(b, c); therefore, the 
problem of determining the existence of an exact consensus tree from triples is also 
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polynomial-time solvable. An algorithm for constructing all exact consensus trees from 
triples has also been developed [6]. Unfortunately, it is often the case that the given tri-
ples are not compatible, in which case it is impossible to find the exact consensus tree. 
This motivated us to study the optimization problems of consensus trees. 

We considered two optimization problems. Given a set Y of triples over species set 
V, the Maximum Consensus Tree with Triples (MCTT) problem is to construct a tree with 
leaf set V such that there are as many satisfied triples as possible, and the Maximum 
Compatible Set with Triples (MCST) problem is to find the compatible species subset of 
maximum cardinality. A species subset U is compatible with a triple set Y if there exists a 
tree with leaf set U such that all the triples over U are satisfied. As an example, Fig. 1 
illustrates the MCTT problem of four triples over four species. The four triples are not 
compatible since there does not exist any evolutionary tree satisfying all four triples. The 
maximum consensus tree shown in the figure satisfies all the triples except (c(bd)). Set 
{a, b, c} is a maximum compatible set since there is only one triple (a(bc)) over the three 
species, thus, the set is obviously compatible. In fact, in this example, any subset of three 
species is a maximum compatible set. 

 

(a)                                (b) 
Fig. 1. (a) The rooted trees corresponding to the four rooted triples (a(bc)), (c(ad)), (b(bd)). (b) The 

maximum consensus tree of the triples. 

 
The problem of finding the maximum consensus tree from constraints of the form 

lca(a, b) → lca(c, d) was shown to be NP-hard, and a 3-approximation algorithm was 
proposed [3]. The approximation algorithm also can be applied to the MCTT problem, 
but the complexity of the MCTT problem was left open. Recently, it has been shown that 
the MCTT problem is also NP-hard, and exact and heuristic algorithms have been de-
veloped [8]. The NP-hardness of the MCTT problem was also shown by Jansson inde-
pendently [4]. Similar problems for unrooted trees have also been investigated. A quartet 
represents the relationship between four species on an unrooted tree. The problem of 
determining if there is a tree satisfying a given set of quartets has been shown to be 
NP-complete [7]. Therefore, the corresponding optimization problem is obviously 
NP-hard. 

a d b c
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In this paper, we propose another heuristic algorithm for the MCTT problem. The 
performance of the algorithm was tested by means of experiments. Based on the experi-
mental results, the heuristic algorithm is better than the previously proposed ones and 
runs in a reasonable amount of time. We also show here that the MCST problem is 
NP-hard. 

2. A HEURISTIC ALGORITHM FOR THE MCTT PROBLEM 

In this section, we present a heuristic algorithm for the MCTT problem. The algo-
rithm is derived from the exact algorithm [8], and the performance is analyzed by com-
paring with the exact algorithm and with previous heuristic algorithms. For completeness, 
we first briefly introduce those algorithms.  

2.1 The Exact Algorithm 

The algorithm ExactMCTT uses the dynamic programming strategy and is based 
on the following formula: 
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Let U be the set of all considered species. For a subset V ⊂ U, B(V) is the set of all 
bipartitions of V. The value score(V) is the maximum number of satisfiable triples over V, 
and w(V1, V2) of two disjoint sets represents the number of triples (x(v1v2)) in which v1∈ 
V1, v2 ∈ V2 and x ∈ U\V. The algorithm computes the score of a set by trying all of its 
bipartitions. A set V corresponds to an internal node of the evolutionary tree, and two 
subsets of the best bipartition correspond to the two subtrees of the internal node. By 
computing the scores of subsets with cardinalities from small to large, the algorithm 
takes O((m + n2)3n) time and O(2n) space, in which m and n are the numbers of triples 
and species respectively. 

2.2 Previous Heuristics 

We introduce the following three heuristics proposed in the previous papers. 

∑ BOSF: The Best-One-Split-First algorithm [3] uses the top-down splitting strategy. 
The algorithm repeatedly splits the species set into bipartitions of the form (V1, V2), in 
which V1 contains only a singleton. Therefore the algorithm always constructs a linear 
tree. In each iteration, the split species is chosen greedily by finding the maximum ratio 
of the number of satisfied triples to the number of conflicted triples. 

∑ MCSF: The Min-Cut-Split-First algorithm [3] also uses the top-down splitting strategy. 
The algorithm is derived from the exact algorithm for compatible triples [1]. For com-
patible triples, it is always possible to find a bipartition without conflicting any triple in 
each iteration. For incompatible triples, the MCSF algorithm repeatedly splits the spe-
cies set into bipartitions such that the number of conflicted triples is minimized. The 
bipartition in each iteration is found by computing the minimum cut of an auxiliary 
graph. 



BANG YE WU 

 

184 

 

∑ BPMF: The Best-Pair-Merge-First algorithm [8] uses the bottom-up merging strategy. 
The algorithm repeatedly merges two subtrees with best scores. Six different scoring 
functions were tested. Basically, in each iteration, it tries to maximize the number of 
satisfied triples and to minimize the number of conflicted triples. It was reported that 
none of the six scoring functions is absolutely better than the others. In our experiments, 
we ran the six algorithms for each data instance and took the best one as the result of 
the algorithm. 

2.3 The Heuristic Algorithm 

The Dynamic-Programming-With-Pruning (DPWP) algorithm, the heuristic algo-
rithm we propose in this paper, is derived from the exact algorithm with the dynamic 
programming strategy. The exact algorithm runs in exponential time since the number of 
subsets is exponential. Instead of all the subsets, we use an array Qi to keep at most K 
subsets for each possible cardinality i. The algorithm merges the subsets with cardinal-
ities from small to large. When a subset V of cardinality i is considered, it is merged with 
each of the subsets in Qj for each j ≤ i. The resulting set is then considered for placement 
into the array. If the set is already in the array, we keep the best score of the set, other-
wise into the array. However, if the array is full, the set with the minimum score is dis-
carded. Instead of score(V) defined in Eq. (1), the scoring function to measure the good-
ness of merging two set V1 and V2 is 

,
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in which w(V1, V2) is the number of satisfied triples as defined in Eq.(1) and c(V1, V2) is 
the number of triples conflicted by merging V1 and V2. Precisely speaking, c(V1, V2) is the 
number of triples of the form (i(xj)) or (j(xi)), in which i ∈ V1, j ∈ V2, and x ∉ V1 ∪ V2. 
The score of two intersecting sets is -∞ since the merge is invalid. The algorithm is as 
follows. 

Algorithm DPWP(K) 
Input: A set Y of rooted triples over species set U of cardinality n.  

All triples are stored in a matrix M of lists. M[i, j] is a list of the elements of 
set {x| (x(ij)) ∈ Y}. 

Output: A rooted evolutionary tree T. 
Step 1: (Initialization) 

Array Q1 contains all subsets of singleton, and Qi is empty for 2 ≤ i ≤ n.  
For each subset V in the arrays, score2(V) is the currently best score and 

partition(V) is the bipartition corresponding to score2(V).  
Step 2: (Compute the number of satisfied triples) 

For i = 1 to n − 1 do 
For j = 1 to i do 

For each V1 in Qi and V2 in Qj do 
Compute the score score2(V1, V2); 
Search Qi+j for V = V1 ∪ V2; 
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If V exists, keep the better score 
else put V into Qi+j; 
If |Qi+j| > K, delete the set with smallest score; 

Step 3: Construct the tree by backtracking partition(U). 
Step 4: Output the tree. 

The complexity of the algorithm is given in the next theorem. Since the proof is ob-
vious, we ignore it here. 

Theorem 1  The algorithm DPWP runs in O(n2K2(n3 + K)) time and uses O(nK) space. 

2.4 The Experimental Results 

2.4.1 The environment of the experiments 

Both the exact and heuristic algorithms were coded in the C language and ported to 
a personal computer equipped with an Intel Pentium IV-1.8 CPU and 128M bytes of 
memory. The platform was Microsoft WIN32. The triples were generated randomly over 
all species. In this subsection, n is the number of species, m is the number of triples, and 
K is the array size of the DPWP algorithm. We ran the exact algorithm only for n ≤ 20, 
and the other heuristics for n ≤ 30. For the exact algorithm with n = 20, only a few in-
stances were tested. For the other cases, hundreds of data were tested. 

2.4.2 Running time 

The heuristic algorithms BOSF, MCSF, and BPMF ran quickly. In all of our tests, 
the number of species was no more than 30, and the three algorithm obtained results 
within one second. We measured the running time of the exact algorithm with n ranging 
from 12 to 20, and the time of DPWP with n ranging from 12 to 30. The results are 
shown in Table 1, in which DPWP(K) means the algorithm DPWP with array size K. 

Table 1. The running time (second). 

n 12 15 18 20 24 27 30 
Exact 1 18 752 8314 NA NA NA 

DPWP(300) 1 2 5 7 16 21 34 
DPWP(600) 2 7 13 19 54 84 130 
DPWP(900) 3 15 34 78 128 201 273 

2.4.3 Performances 

The performance ratios of the heuristic algorithms are shown in the following tables, 
The ratio was obtained using opt(Y)/heu(A, Y), where opt(Y) is the maximum number of 
satisfiable triples in Y and heu(A, Y) is the number of triples satisfied by the tree found by 
heuristic algorithm A. Table 2 shows the worst ratios for different numbers of triples. 
Tables 3 and 4 show the average and worst ratios for different numbers of species. Table 
5 shows how much the DPWP algorithm improved the previous heuristics. The ratio (in  
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Table 2. The worst error ratios for different numbers of triples with n = 15. 

 BPMF BOSF MCSF DPWP(300) DPWP(600) DPWP(900) 

m = 200 1.1630 1.2250 1.4000 1.0106 1.0000 1.0000 

m = 400 1.1081 1.1486 1.3248 1.0066 1.0063 1.0000 

m = 600 1.0885 1.1270 1.2321 1.0048 1.0000 1.0000 

 

Table 3. The average error ratios for different numbers of species. 

 BPMF BOSF MCSF DPWP(300) DPWP(600) DPWP(900) 

n = 12 1.0511 1.0835 1.1699 1.0000 1.0000 1.0000 

n = 15 1.0635 1.0932 1.1889 1.0003 1.0000 1.0000 

n = 18 1.0676 1.0903 1.1614 1.0008 1.0005 1.0001 

n = 20 1.0849 1.0920 1.1838 1.0026 1.0000 1.0000 

 

Table 4. The worst error ratios for different numbers of species. 

 BPMF BOSF MCSF DPWP(300) DPWP(600) DPWP(900) 

n = 12 1.1707 1.2727 1.5484 1.0000 1.0000 1.0000 

n = 15 1.1630 1.2250 1.4000 1.0106 1.0063 1.0000 

n = 18 1.1463 1.1870 1.3738 1.0084 1.0068 1.0068 

n = 20 1.1111 1.1301 1.2222 1.0078 1.0000 1.0000 

 

Table 5. The improvement by DPWP. 

n 18 21 24 27 30 

Max 10.0 % 14.0 % 14.3 % 15.9 % 14.6 % 

average 6.0 % 7.3 % 8.3 % 9.0 % 9.3 % 

 
percentage) is calculated using (x − y)/y, in which x is the result (the number of satisfied 
triples) obtained by DPWP and y is the best of the results obtained by BPMF, BOSF, and 
MCSF. 
 
2.5 Discussion 

 
Based on the experimental results, we make the following observations. 
 

∑ For all data used in our tests, the DPWP algorithm performed better than the previously 
proposed heuristics. 

∑ The DPWP algorithm found the optimal solution in most of the cases with a small 
number of species. In our tests, the success rate of DPWP(900) finding the optimal so-
lution was 100% for n = 12, 99.3% for n = 15, and 98% for n = 18. 
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∑ The running time of the DPWP algorithm was much more reasonable than that of the 
exact algorithm. 

∑ Using the DPWP algorithm, it was possible to achieve a trade-off between the running 
time and the quality of the solution. 

3. THE COMPUTATIONAL COMPLEXITY OF MCST 

In this section, we shall show the NP-hardness of the MCST problem by reducing 
the Feedback Vertex Set problem to it. We will first define the Feedback Vertex Set 
problem. 

Definition 1  Let G = (V, A) be a directed graph. A subset V* of V is a feedback vertex 
set if every directed cycle in G contains at least one vertex in V*. Given a directed graph 
G = (V, A) and an integer k, the Feedback Vertex Set problem asks if there is a feedback 
vertex set V* with | V*| ≤ k. 

The Feedback Vertex Set problem is NP-complete [2, 5]. 

Definition 2  Let Y be a set of triples over vertex set V, and let U ⊂ V. The reduced tri-
ple set YU is the subset of triples over U, i.e., YU  = {(a(bc)): a, b, c ∈ U} ∩ Y. A vertex 
set U is compatible with Y if the reduced triple set YU is compatible. 

Definition 3  Given a set Y of rooted triples over species set V, the maximum compati-
ble set with triples (MCST) problem looks for a subset U of V such that U is compatible 
with Y and the cardinality of U is the maximum. 

The computational complexity is shown in the next theorem. 

Theorem 2  The MCST problem is NP-hard. 

Proof: We reduce the Feedback Vertex Set problem to the MCST problem. Given an 
instance G = (V, A) and k of the Feedback Vertex Set problem, we construct a set of 
rooted triples Y and show that the directed graph G contains a feedback vertex set of car-
dinality k if and only if there is a compatible vertex set of cardinality 2n − k, where n = 
|V|.  

Let xi ∉ V, 1 ≤ i ≤ n. For every arc (u, v) ∈ A, we construct n corresponding triples 
(u(xiv)) in Y, where 1 ≤ i ≤ n. Suppose that U is a feedback vertex set of G and |U| = k. 
Removing U and all arcs incident to any vertex in U from G results in a directed acyclic 
graph G1 = (V\U, A1). Since G1 contains no cycle, we may assign to each vertex v a label 
f(v) ∈ {1…p} such that f(u) < f(v) for every (u, v) ∈ A1, where p ≤ |V| is the number of 
nodes of the longest path in G1. Let Vi = {v| f(v) = i, v ∈ V\U} and Ti be an arbitrary evo-
lutionary tree of Vi for 1 ≤ i ≤ p. We construct an evolutionary tree T of V ∪ X as shown 
in Fig. 2.  
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Fig. 2. Transformation of an instance of the Feedback Vertex Set problem into that of the MCST 

problem. (a) the labeling of a directed acyclic graph; (b) a maximum consensus tree of the 
MCST problem. 

 
For any arc (u, v) ∈ A1, since f(u) < f(v), the corresponding triples (u(xiv)) in Y are 

compatible with T. Therefore, all the triples corresponding to arcs in A1 are satisfied, and 
the cardinality of the compatible set is |V\U| + |X| = 2n − k. 

Conversely, suppose that the cardinality of the maximum compatible set is 2n − k. 
Let U = U1 ∪ X1 be the maximum compatible set, where U1 ⊂ V and X1 ⊂ X. First, we 
will show that X1 = X. If X1 is empty, the cardinality of U1 is at most n. However, there is 
a trivial compatible set consisting of X and any two vertices in V. We conclude that X1 is 
not empty. 

If there exists some xi ∉ X1 and xj ∈ X1, then U1 is not the maximum since we may 
insert xi into the tree without conflicting any triple. Consequently, X1 = X. 

As shown in Fig. 2, we let the path from the root to x be (r1, r2, …, rp, x), and let Vi 
denote the set of leaves whose lowest common ancestor with x is ri. For each triple (u(xv)) 
∈ YU, in which u ∈ Vi and v ∈ Vj, since lca(u, x) = lca(u, v) → lca(x, v), we have j > i. Let 
A1 be the set of arcs corresponding to the triples in YU, that is, A1 = {(u, v)| (u(xv)) ∈ YU}. 
Consider the graph G1 = (U1, A1) and label each vertex v with i if v ∈ Vi. Since all the arcs 
in A1 extend from vertices with small labels to those with larger labels, G1 contains no 
directed cycle. Therefore, V\U1 is a feedback vertex set of G and contains k vertices. 

The above transformation reduces the Feedback Vertex Set problem to the MCST 
problem in polynomial time. Since the Feedback Vertex Set problem is NP-complete, the 
MCST problem is NP-hard. 

4. CONCLUDING REMARKS 

In this paper, we have proposed a new heuristic algorithm DPWP for the MCTT 
problem. By means of the experimental results, we have shown that the algorithm per-
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forms better than the previously proposed heuristics and runs in a reasonable amount of 
time. The DPWP algorithm can be easily modified to work so that it can be applied to the 
weighted version of the MCTT problem, in which each triple has a weight and we want 
to find the tree such that the total weight of the satisfied triples is maximized. All the 
algorithms used in this study can be extended to the case where the input is a set of trees 
not restricted to triples by transforming the input trees into triples. However, the result is 
a tree satisfying the maximum number of triples but not the number of input trees.  

The exact algorithm for the MCTT problem also can be applied to the MCST prob-
lem. Since the decision version of the MCST problem is polynomial-time solvable, an-
other approach to obtaining the exact solution of the MCST problem is to determine the 
compatibility of each subset. Good heuristic and approximation algorithms would be of 
interest in this regard. 
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