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Abstract

Let G be an undirected graph with nonnegative edge lengths. Given two vertices as
sources and all vertices as destinations, we investigated the problem how to construct
a spanning tree ofG such that the sum of distances from sources to destinations is
minimum. In the paper, we show the NP-hardness of the problem and present a polynomial
time approximation scheme. For anyε > 0, the approximation scheme finds a(1 + ε)-
approximation solution inO(n�1/ε+1�) time. We also generalize the approximation
algorithm to the weighted case for distances that form a metric space.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

Let G = (V ,E,w) be an undirected graph with nonnegative edge length
function w. Given k vertices as sources and all vertices as destinations, the
k-source minimum routing cost spanning tree(k-MRCT) problem is to construct
a spanning treeT of G such that the sum of distances from sources to
destinations is minimum. That is, we want to find a spanning treeT minimizing
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∑
s∈S

∑
v∈V dT (s, v), whereS is the set of sources anddT (s, v) is the distance

betweens andv onT .
If there is only one source, the problem is reduced to theshortest-path tree

problem, and it is always possible to find a spanning tree such that the path
between the source and each vertex is a shortest path on the given graph. The
shortest-path tree problem has been well studied and efficient algorithms were
developed. For example, Dijkstra’s algorithm [2] finds a shortest path tree for a
graph with nonnegative weights inO(|V |2) time. The time complexity can be
improved toO(|E|+ |V | log|V |) by using Fibonacci heaps, and other algorithms
with different considerations can be found in [1]. For undirected graph with
positive integer weights, the most efficient algorithm runs inO(|E|) time [7].

For the other extreme case that all vertices are sources, the problem is reduced
to the minimum routing cost spanning tree(MRCT) problem (also called the
shortest total path length spanning treeproblem), and is therefore NP-hard [3,5].
The first constant ratio approximation algorithm for the MRCT appeared in [8].
It was shown that there is a shortest path tree which is a 2-approximation of
the MRCT. The approximation ratio was improved to(4

3 + ε) for any fixed
ε > 0 [9], and then further improved to apolynomial time approximation scheme
(PTAS) [10].

The optimum communication spanning tree(OCT) problem [4] is a more
general version of the MRCT problem. In the OCT problem, in addition to the
edge length, we are also given the requirement for each pair of vertices, and the
goal is to minimize the sum of the distances multiplied by the requirements, over
all pairs of vertices. In [11], two vertex-weighted generalizations of the MRCT
problem were studied; one is theoptimal product-requirement communication
spanning tree(PROCT) problem and the other is theoptimal sum-requirement
communication spanning tree(SROCT) problem. In the PROCT problem, the
requirement between a pair of vertices is assumed to be the product of the given
weights of the two vertices; while, in the SROCT problem, the requirement is the
sum of the vertex weights. Both PROCT and SROCT problems are special cases
of the OCT problem. A 1.577-approximation algorithm for the PROCT problem
and a 2-approximation algorithm for the SROCT problem were shown [11].
Furthermore the PROCT problem was shown to admit a PTAS [12].

The k-source MRCT problem is a special case of the SROCT problem, in
which the vertex weight of each source is one and the weights of all the other
vertices are zeros. The relationship of the four problems is shown in Fig. 1.

The k-MRCT problem for generalk is obviously NP-hard since it contains
the MRCT problem as a special case. But the previous results do not tell
us the complexity of thek-MRCT problem for a fixed constantk. Since the
k-MRCT problem is a special case of the SROCT problem, the 2-approximation
algorithm for the SROCT problem [11] ensures the same approximation ratio of
thek-MRCT. In this paper, we show that thek-MRCT problem is NP-hard even
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Fig. 1. The relationship of the OCT, PROCT, SROCT, MRCT, andk-MRCT problems.

for k = 2. We present a PTAS for the 2-MRCT problem. For anyε > 0, the PTAS
finds a solution with approximation ratio 1+ ε in O(n�1/ε+1�) time.

We also consider a weighted version of the 2-MRCT problem. In the weighted
2-MRCT problem, there is a positive weight of each of the two sources and we
want to minimize the weighted total distance from sources to all vertices, i.e.,∑

v∈V (λ1dT (s1, v) + λ2dT (s2, v)), wheres1, s2 are source vertices andλ1, λ2

are the weights of the two sources. In this paper, we present a 2-approximation
algorithm for general graphs and a PTAS for metric graphs. A metric graph is
a complete graph with edge weights satisfying the triangle inequality.

The remaining sections are organized as follows: In Section 2, some definitions
and notations are given. The NP-hardness of the 2-MRCT problem is shown in
Section 3, and the PTAS for the 2-MRCT is presented in Section 4. Finally, the
weighted case is in Section 5, and concluding remarks are given in Section 6.

2. Preliminaries

In this paper, a graph is a simple, connected and undirected graph. ByG =
(V ,E,w), we denote a graphG with vertex setV , edge setE, and edge length
function w. The edge length function is assumed to be nonnegative. For any
graphG, V (G) denotes its vertex set andE(G) denotes its edge set. Letw
be an edge length function on a graphG. For a subgraphH of G, we define
w(H)=w(E(H))= ∑

e∈E(H) w(e). We shall also usen to denote|V (G)|.

Definition 2.1. Let G = (V ,E,w) be a graph. Foru,v ∈ V , SPG(u, v) denotes
a shortest path betweenu andv on G. The shortest path length is denoted by
dG(u, v)=w(SPG(u, v)).
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Definition 2.2. Let H be a subgraph ofG. For a vertexv ∈ V (G), we
use dG(v,H) to denote the shortest distance fromv to H , i.e., dG(v,H) =
minu∈V (H) dG(v,u). The definition also includes the case thatH is a vertex set
but no edge.

We now define thek-source routing cost of a tree.

Definition 2.3. For a treeT andS ⊂ V (T ), the routing costof T with source
setS is defined byc(T ,S) = ∑

s∈S
∑

v∈V (T ) dT (s, v). When there are only two
sourcess1 ands2, we also usec(T , s1, s2) to denote the routing cost.

Lemma 2.1. Let T be a spanning tree ofG = (V ,E,w) and P be the path
betweens1 and s2 on T . c(T , s1, s2) = n × w(P) + 2

∑
v∈V dT (v,P ), in which

n= |V |.

Proof. For anyv ∈ V , dT (v, s1)+dT (v, s2)=w(P)+2dT (v,P ). Summing over
all vertices inV , the result is obtained.✷

Once a pathP between the two sources has been chosen, by Lemma 2.1, it
is obvious that the best way to extendP to a spanning tree is to add the shortest
path forest using the vertices ofP as multiple roots, i.e., the distance from every
other vertex to the path is made as small as possible. A shortest path forest can
be constructed by an algorithm similar to the shortest path tree algorithm. First
we create a dummy node and the multiple roots are connected to the dummy
node by edges of zero weight. Then a shortest path tree from the dummy node
is constructed, and the shortest path forest is obtained by removing the dummy
node and dummy edges. The time complexity is the same as the shortest path
tree algorithm. However, the most time-efficient algorithm for the shortest path
tree depends on the graph. In the remaining paragraphs, the time complexity for
finding a shortest path tree/forest of a graphG will be denoted byfSP(G). In this
paper, we consider only undirected graphs with nonnegatice edge weights. For
general graphs,fSP(G) is O(|E| + |V | log|V |), and it isO(|E|) for graphs with
integer weights [7]. However, the time complexity isO(n2) for dense graphs, i.e.,
the number of edges isθ(n2).

3. The computational complexity

In this section, we show the NP-hardness of the 2-MRCT problem by reducing
theexact cover by3-sets(X3C) problem to it.
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Definition 3.1. Given a setX with |X| = 3q and a collectionC of 3-element
subsets ofX, the X3C problem asks if there is a subcollectionC′ ⊆ C such that
every element ofX occurs in exactly one member ofC′.

Let X = {xi: 1 � i � 3q} andC = {Yi : 1 � i � m} be an instance of the
X3C problem, in which eachYi is a 3-element subset ofX. To reduce the X3C
problem to the 2-MRCT problem, we construct a complete graphG= (V ,E,w)

as an instance of the 2-MRCT problem. The graphG consists of the following
subgraphs as illustrated in Fig. 2.

• For 1� i � q , Gi is a complete graph with vertex set{vji : 1 � j � m}, in

which vji corresponds toYj in C. Every edge inGi has weight one.
• H is a complete graph with vertex set{ui : 1 � i � 3q}, in which eachui

corresponds to one element ofX. Every edge inH has weight one.
• G0 contains only one vertexs1 andGq+1 contains only one vertexs2.

The weights of edges between the subgraphs are defined as follows:

• Foru ∈ V (Gi), v ∈ V (Gj ) andi �= j , w(u,v) = |i − j |.
• For ui ∈ V (H) andvjk ∈ V (Gk), 1 � k � q , w(ui, v

j

k ) = L if xi ∈ Yj ; and

w(ui, v
j
k )= L+ 1 otherwise, in whichL� q + 1 is an integer.

• w(ui, s1)=w(ui, s2)= L+ 1 for ui ∈ V (H).

Obviously the edge weights satisfy the triangle inequality, andG is a metric
graph. Letn= |V | be the number of vertices ofG. We haven= qm+ 3q + 2 =
q(m+ 3)+ 2. In the next three propositions, we shall show that there is an exact
cover of the X3C problem if and only if there is a spanning treeT of G such that
c(T , s1, s2)= n(q + 1)+ 2(m− 1)q + 6qL.

Fig. 2. The transformation of an instance of the X3C problem to an instance of the 2-MRCT problem.
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Proposition 3.1. An exact cover of the X3C problem implies a spanning treeT of
G with c(T , s1, s2)= n(q + 1)+ 2(m− 1)q + 6qL.

Proof. Suppose that there is an exact cover of the X3C problem. Without loss
of generality, let {Yi : 1 � i � q} ⊂ C be an exact cover ofX. Let P =
(s1, v

1
1, v

2
2, . . . , v

q
q , s2). Construct a spanning treeT such thatT containsP and

all the other vertices are connected toP by the shortest edge toP . Each vertex
in V (Gi) \ {vii } is connected tovii by an edge of weight one, for 1� i � q . Since
{Yi : 1� i � q} is an exact cover ofX, each vertex inV (H) is connected to some
vertex ofP by an edge of weightL. By Lemma 2.1,

c(T , s1, s2) = n×w(P)+ 2
∑
v∈V

dT (v,P )

= n(q + 1)+ 2(m− 1)q + 6qL. ✷
Proposition 3.2. Let T be a spanning tree ofG with c(T , s1, s2) = n(q + 1) +
2(m − 1)q + 6qL. Then, the pathP betweens1 and s2 has exactlyq vertices
p1,p2, . . . , pq with pi ∈ V (Gi).

Proof. First we shall show thatP is a shortest path andw(P)= q + 1. Consider
the following two cases.

Case 1. P contains a vertex inV (H). By the definition ofG, w(P)� 2L+ 2. By
Lemma 2.1,c(T , s1, s2)= n×w(P)+ 2

∑
v∈V dT (v,P ).

c(T , s1, s2) � n(2L+ 2)� n(q + 1+L+ 2)

= n(q + 1)+ n(L+ 2)

= n(q + 1)+ 2q(m+ 3)+ 4+ (
q(m+ 3)+ 2

)
L

> n(q + 1)+ 2(m− 1)q + 6qL,

whenm� 3.

Case 2. Assume thatP containsq + k vertices of
⋃

1�i�q V (Gi) for anyk > 0.
Since all vertices inV (H) are not on the path, we have

c(T , s1, s2)

� n×w(P)+ 2
∑
v∈V

dT (v,P )

� n(q + k + 1)+ 2
∑

1�i�q

∑
v∈V (Gi)

dT (v,P )+ 2
∑

v∈V (H)

dT (v,P )

� n(q + k + 1)+ 2
(
qm− (q + k)

) + 2(3q)L

= n(q + 1)+ kn+ 2q(m− 1)− 2k + 6qL
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> n(q + 1)+ 2(m− 1)q + 6qL.

For both of the two cases, we have shown thatc(T , s1, s2) > n(q + 1) +
2(m− 1)q + 6qL. Thereforew(P)= q + 1. By Lemma 2.1,

c(T , s1, s2) = n×w(P)+ 2
∑
v∈V

dT (v,P )

= n(q + 1)+ 2
∑

1�i�q

∑
v∈V (Gi)

dT (v,P )+ 2
∑

v∈V (H)

dT (v,P )

� n(q + 1)+ 2(m− 1)q + 6qL.

The equality holds if and only if
∑

1�i�q

∑
v∈V (Gi)

dT (v,P ) = (m − 1)q
and

∑
v∈V (H) dT (v,P ) = 3qL. Let P = (p0 = s1,p1,p2, . . . , s2). The second

equation implies that each vertex inV (H) is connected to some vertex ofP by
an edge of weightL. That is, for eachui ∈ V (H), there exists(ui ,pj ) ∈ E(T )

andw(ui,pj ) = L. It also implies that the path contains at leastq vertices in
addition to the two sources. Then, byw(P)= q + 1, we have thatpi ∈ V (Gi) for
1 � i � q . ✷
Proposition 3.3. Let T be a spanning tree ofG with c(T , s1, s2) = n(q + 1) +
2(m− 1)q + 6qL. Then, there exists an exact cover of the X3C problem.

Proof. By Proposition 3.2, the path between the two sources isP = (p0 =
s1,p1,p2, . . . , s2) with pi ∈ V (Gi) for 1 � i � q . Consequently there are exact
3 vertices ofV (H) connected to eachpj by edges of weightL. Without loss
of generality, assume thatpi = vii for 1 � i � q . By the definition ofG, for
eachxi ∈ X, there existsYj such that 1� j � q and xi ∈ Yj , which implies
{Y1, Y2, . . . , Yq} is an exact cover ofX. ✷

The next theorem shows the complexity of the problem.

Theorem 3.1. The two-source MRCT problem is NP-hard even for metric inputs.

Proof. By Propositions 3.1 and 3.3, we have shown that the X3C problem can be
reduced to the 2-MRCT problem in polynomial time. Since the X3C problem is
NP-complete [3,6], the 2-MRCT problem is NP-hard even with metric inputs.✷

4. A PTAS for 2-MRCT

Before showing our PTAS, we give a simple 2-approximation algorithm, and
then generalize the idea to the PTAS.
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Algorithm 1.

Input: A graphG= (V ,E,w) ands1, s2 ∈ V .
Output: A spanning treeT of G.
1. Find a shortest pathP betweens1 ands2 onG.
2. Find the shortest path forest with multiple roots inV (P).
3. Let T be the union of the forest andP .

Lemma 4.1. The AlgorithmA1 finds a2-approximation of the2-MRCT of a graph
G in fSP(G) time.

Proof. First we show a lower bound of the optimum. LetY be the optimal tree
of the 2-MRCT problem with inputG ands1, s2. SincedY (v, si )� dG(v, si) for
any vertexv andi ∈ {1,2},

c(Y, s1, s2)�
∑
v∈V

(
dG(v, s1)+ dG(v, s2)

)
. (1)

By Lemma 2.1, we have

c(Y, s1, s2)� ndG(s1, s2). (2)

By Eqs. (1) and (2), we have

c(Y, s1, s2)� 1

2

∑
v

(
dG(v, s1)+ dG(v, s2)

) + n

2
dG(s1, s2). (3)

Let T be the tree constructed by Algorithm A1 andP be the shortest between
s1 and s2. Since each vertex is connected toP by a shortest path to any of the
vertices ofP at Step 2, for any vertexv,

dT (v,P ) � min
{
dG(v, s1), dG(v, s2)

}
� 1

2

(
dG(v, s1)+ dG(v, s2)

)
.

By Lemma 2.1,

c(T , s1, s2) = n×w(P)+ 2
∑
v∈V

dT (v,P )

� ndG(s1, s2)+
∑
v

(
dG(v, s1)+ dG(v, s2)

)
.

Comparing with Eq. (3), we havec(T , s1, s2) � 2c(Y, s1, s2) and T is a 2-
approximation of the 2-MRCT.

As mentioned in Section 2, the shortest path forest can be constructed by an
algorithm similar to the shortest path tree algorithm. The total time complexity is
dominated by the time of the shortest path tree algorithm, which isfSP(G). ✷

As mentioned in Section 1, the 2-MRCT is a special case of the SROCT
problem. By the result in [11], the 2-MRCT can be approximated with error
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ratio 2 and time complexityO(n3). The simple algorithm ensures the same error
ratio and is more efficient in time. The ratio shown in Lemma 4.1 is tight in
the sense that there is an instance such that the spanning tree constructed by
the algorithm has routing cost twice as the optimum. Consider the complete
graph in whichw(v, s1)=w(v, s2)= 1 andw(s1, s2)= 2 for each vertexv. The
distance between any other pair of vertices is zero. At Step 1, the algorithm may
find edge(s1, s2) as the pathP , and then each other vertex is connected to one
of the two sources. The routing cost of the constructed tree is 4n − 4. On the
optimal tree, the path between the two sources is a two-edge path, and all other
vertices are connected to the middle vertex of the path. The optimal routing cost
is therefore 2n. The increased cost is due to missing the vertex on the path. The
existence of the vertex reduces the cost at an amount ofw(P) for each vertex.

The worst case instance of the simple algorithm give us the intuition to improve
the error ratio. To reduce the error, we may try to guess some vertices of the
path. Letm be a vertex of the path between the two sources on the optimal tree,
andU be the set of vertices connected to the path atm. If the pathP found in
Step 1 of the simple algorithm includesm, the distance from any vertex inU
to each of the sources will be no more than the corresponding distance on the
optimal tree. In addition, the vertexm partitions the path into two subpaths. The
maximal increased cost by one of the vertices is the length of the subpath instead
of the whole path. Our PTAS is to guess some of the vertices of the path, which
partition the path such that the number of vertices connected to each subpath is
small enough. We now describe the PTAS and the analysis precisely.

In the remaining paragraphs, letY be the 2-MRCT ofG = (V ,E,w) and
n = |V |. Also letP = (p1 = s1,p2,p3, . . . , ph = s2) be the path betweens1 and
s2 onY . DefineVi , 1� i � h, as the set of the vertices connected toP atpi , and
alsopi ∈ Vi . Let k � 0 be an integer. For 0� i � k + 1, definemi = pj in which
j is the minimal index such that

∑
1�q�j

|Vq | �
⌈
i

n

k + 1

⌉
.

By definition, s1 = m0 and s2 = mk+1. For 0� i � k, let Ui = ⋃
a<j<b Vj

andPi be the path frompa to pb, in which pa = mi andpb = mi+1. Also let
U = V \⋃

0�i�k Ui andM = {mi : 0 � i � k+1}. Note that the above definitions
include the casemi = mi+1. In such a case,Pi contains only one vertex and
Ui is empty. The definitions are shown in Fig. 3. By the above definitions, the
vertex setV is partitioned intoU,U0,U1, . . . ,Uk satisfying the properties in the
following lemmas.

Lemma 4.2. For anyv ∈U , dG(v,M)� dY (v,P ).

Proof. Let v ∈ Vi . Sincepi =mj for somej ,

dY (v,P ) = dY (v,pi)� dG(v,pi)= dG(v,mj )� dG(v,M). ✷
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Fig. 3. The definitions of the partition of the vertices.

Lemma 4.3.
∑

v∈Ui
dG(v,M)�

∑
v∈Ui

dY (v,P )+ n
2(k+1)w(Pi) for any0 � i � k.

Proof. For anyv ∈ Vj ⊆Ui ,

dG(v,M) � 1

2

(
dG(v,mi)+ dG(v,mi+1)

)

� 1

2

((
dY (v,P )+ dY (mi,pj )

) + (
dY (v,P )+ dY (pj ,mi+1)

))

= dY (v,P )+ 1

2
dY (mi,mi+1)

= dY (v,P )+ 1

2
w(Pi).

Since|Ui | � n/(k + 1), we have

∑
v∈Ui

dG(v,M) �
∑
v∈Ui

(
dY (v,P )+ 1

2
w(Pi)

)

�
∑
v∈Ui

dY (v,P )+ n

2(k + 1)
w(Pi ). ✷

The vertex setM is defined to partition the vertices into small pieces. Our
goal is to correctly guessm1,m2, . . . ,mk and construct a treeX spanning these
vertices along withs1 ands2, with the property thatdX(v, s1)+dX(v, s2)�w(P)

for any v ∈ V (X). Once such a treeX has been constructed, we extend it to a
spanning treeT by adding the shortest path forest with vertices inV (X) as the
multiple roots. In the next lemma, we show thatT is a( k+2

k+1)-approximation.

Lemma 4.4. LetX be a tree spanningM anddX(v, s1)+ dX(v, s2)� w(P) for
anyv ∈ V (X). The spanning treeT , which is the union ofX and the shortest path
forest with vertices inV (X) as the multiple roots, is a( k+2

k+1)-approximation of the
2-MRCT.

Proof. By definition, the verticesm1,m2, . . . ,mk partition the vertex setV into
(U,U0,U1, . . . ,Uk) and the subsets satisfy the properties in Lemmas 4.2 and 4.3.
SincedX(v, s1)+ dX(v, s2)�w(P) for anyv ∈ V (X), we have
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c(T , s1, s2) =
∑
v∈V

(
dT (v, s1)+ dT (v, s2)

)

�
∑
v∈V

(
2dT (v,X)+w(P)

)

= n×w(P)+ 2
∑
v∈V

dT (v,X)

� n×w(P)+ 2
∑
v∈U

dT (v,X)+ 2
∑

0�i�k

∑
v∈Ui

dT (v,X). (4)

SincedT (v,X) = dG(v,X) � dG(v,M) for anyv ∈ U , by Lemma 4.2, we have∑
v∈U

dT (v,X)�
∑
v∈U

dG(v,M)�
∑
v∈U

dY (v,P ) (5)

Similarly dT (v,X)� dG(v,M) for anyv ∈Ui , and, by Lemma 4.3, we have

∑
0�i�k

∑
v∈Ui

dT (v,X) �
∑

0�i�k

(∑
v∈Ui

dY (v,P )+ n

2(k + 1)
w(Pi)

)

�
∑

0�i�k

∑
v∈Ui

dY (v,P )+ n

2(k + 1)
w(P ). (6)

By Eqs. (4)–(6),

c(T , s1, s2) � n×w(P)+ 2
∑
v∈U

dY (v,P )+ 2
∑

0�i�k

∑
v∈Ui

dY (v,P )

+ n

k + 1
w(P)

� k + 2

k + 1
n×w(P)+ 2

∑
v∈V

dY (v,P )

� k + 2

k + 1
c(Y, s1, s2),

sincec(Y, s1, s2)= n×w(P)+ 2
∑

v∈V dY (v,P ) by Lemma 2.1. ✷
The PTAS is listed below.

Algorithm 2.

Input: A graphG= (V ,E,w), s1, s2 ∈ V , and an integerk � 0.
Output: A spanning treeT of G.
For eachk-tuple(m1,m2, . . . ,mk) of not necessarily distinct vertices, use
the following steps to find a spanning treeT , and output the tree of
minimal routing cost.
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1. Letm0 = s1 andmk+1 = s2.
2. Find a treeX by the following substeps:
2.1. Initially X contains only one vertexm0. /* δ = 0. */
2.2. For i = 0 to k do
2.3. Find any shortest pathQ frommi to mi+1.

LetQ= (q0 =mi, q1, . . . , qh =mi+1).
2.4. For j = 0 toh− 1 do

Let �X =X.
2.5. Add edge(qj , qj+1) toX. /* δ = δ +w(qj , qj+1). */
2.6. If X contains a cycle(a0 = qj+1, a1, a2, . . . , qj , a0) then
2.7. [Case 1.]qj+1 ∈ V (SPX(s1, qj )):

delete the edge(ab, ab+1) such that bothdX(a0, ab) and
dX(ab+1, a0) are no more than one half of the cycle length.

2.8. [Case 2.]qj+1 /∈ V (SPX(s1, qj )): delete edge(a0, a1).
3. Find the shortest path forest spanningV (G) with all vertices inV (X)

as the multiple roots.
4. Let T be the union of the forest andX.

The properties ofX constructed at Step 2 are shown in the next lemma.

Lemma 4.5. Suppose thatm1,m2,. . .,mk be k vertices such thatP connects the
consecutivemi . The graphX constructed at Step2 is a tree anddX(v, s1) +
dX(v, s2)�w(P) for anyv ∈ V (X). Furthermore it takesO(kn2) to constructX.

Proof. Starting from a single vertex,X is repeatedly augmented edge by edge.
As in the comment of Step 2.5, letδ be the total weight of all edge had been added
toX so far. WhenX is completed,

δ =
∑
i

SPG(mi,mi+1)�
∑
i

w(Pi)=w(P)

It is sufficient to show that the following two properties are kept at the end of
Step 2.8.

• X is a tree.
• dX(v, s1)+dX(v, qj+1)� δ for any vertexv ∈ V (X) so far, where(qj , qj+1)

is the last edge added toX.

Initially the properties are true sinceX contains only one vertex. To avoid
confusion, let�X denote the constructed tree before edge(qj , qj+1) is added, and
X denote the tree at the end of Step 2.8. Similarly letδ̄ andδ be the value before
and after adding the edge respectively. It is obvious thatX remains a tree if�X is
a tree, since it is connected and contains no cycle. If the edge does not cause a
cycle, the second property is also straightforward. Now we consider that there is
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Fig. 4. Removing an edge from the cycle.

a cycle(a0 = qj+1, a1, a2, . . . , qj , a0). LetXi ⊂ V (X) denote the set of vertices
which are connected to the cycle atai (Fig. 4).

Suppose that, for any vertexv ∈ V (�X),
d�X(v, s1)+ d�X(v, qj )� δ̄. (7)

We shall show that

dX(v, s1)+ dX(v, qj+1)� δ̄ +w(qj , qj+1)= δ. (8)

There are two cases.

Case 1. qj+1 ∈ V (SP�X(s1, qj )), i.e., s1 ∈ X0 (Fig. 4(a)). First we show that the
edge(ab, ab+1) always exists and can be found by traveling the cycle. Starting
froma0, we travel the cycle and compute the distance froma0. We can always find
vertexab such thatw(a0, a1, . . . , ab) � L/2 andw(a0, a1, . . . , ab, ab+1) > L/2,
whereL is the cycle length. After removing edge(ab, ab+1), dX(a0, ab) � L/2
anddX(ab+1, a0) < L/2. It implies that, for any vertexai on the cycle,

dX(ai, qj+1)� L

2
. (9)

If v ∈ X0, both the distances fromv to s1 and qj+1 do not change, and
dX(v, qj+1)� d�X(v, qj ). Therefore Eq. (8) is true.

Otherwise, assumev ∈ Xi , d�X(v, s1) = d�X(v, ai) + d�X(ai, qj+1) +
d�X(qj+1, s1) andd�X(v, qj )= d�X(v, ai)+ d�X(ai, qj ). By Eq. (7), we have

d�X(v, s1)+ d�X(v, qj )� δ̄,

2d�X(v, ai)+ d�X(ai, qj+1)+ d�X(qj+1, s1)+ d�X(ai, qj )� δ̄,

2d�X(v, ai)+ (
L−w(qj , qj+1)

) + d�X(qj+1, s1)� δ̄,

2d�X(v, ai)+L+ d�X(qj+1, s1)� δ.

By Eq. (9),

dX(v, s1)+ dX(v, qj+1) = 2dX(v, ai)+ 2dX(ai, qj+1)+ dX(qj+1, s1)

� 2d�X(v, ai)+L+ d�X(qj+1, s1)� δ
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Case 2. qj+1 /∈ V (SP�X(s1, qj )) (Fig. 4(b)). In this case edge(a0, a1) is removed.
If v /∈X0, dX(v, s1)= d�X(v, s1) anddX(v, qj+1)= d�X(v, qj )+w(qj , qj+1). By
Eq. (7), Eq. (8) is true.

Otherwisev ∈ X0. Assumes1 ∈ Xi . d�X(v, s1) = d�X(v, a0) + d�X(a0, ai) +
d�X(ai, s1) andd�X(v, qj )= d�X(v, a0)+ d�X(a0, qj ). By Eq. (7),

d�X(v, s1)+ d�X(v, qj )� δ̄,

2d�X(v, a0)+ d�X(ai, s1)+ d�X(a0, ai)+ d�X(a0, qj )� δ̄,

2d�X(v, a0)+ d�X(ai, s1)+ d�X(a0, ai)+L� δ.

The last step is obtained byd�X(a0, qj )+w(qj , qj+1)= L. We have

dX(v, s1)+ dX(v, qj+1) = 2dX(v, a0)+ dX(a0, ai)+ dX(ai, s1)

� 2d�X(v, a0)+L+ d�X(ai, s1)� δ.

We have shown Eq. (8) for both of the cases. By induction,dX(v, s1) +
dX(v, s2)�w(P) for anyv ∈ V (X) at the end of Step 2. The number of vertices
on the pathSPG(mi,mi+1) is at mostO(n). For each vertex on the path, we check
if it causes a cycle and remove an edge from the cycle if it exists. All these can be
done inO(n) time. Consequently the time complexity isO(kn2). ✷

The main result of this section is concluded in the next theorem.

Theorem 4.1. The2-MRCT problem admits a PTAS. For any constantε > 0, a
(1 + ε)-approximation of the2-MRCT of a graphG can be found in polynomial
time. The time complexity isO(n�1/ε+1�) for 0< ε < 1, andfSP(G) for ε = 1.

Proof. For anyε > 0, we choose an integerk = �1/ε−1� and run Algorithm A2.
For ε � 1, i.e.,k = 0, the algorithm is equivalent to Algorithm A1 and finds a 2-
approximation infSP(G) time.

For 0< ε < 1, i.e., k � 1, the algorithm tries each possiblek-tuple in each
iteration. There exists ak-tuple(m1,m2, . . . ,mk) which partitions the vertex set
V into (U,U0,U1, . . . ,Uk) and the subsets satisfy the properties in Lemmas 4.2
and 4.3. By Lemma 4.5 and Steps 3 and 4, the outputT is a tree and therefore
feasible. Also by Lemma 4.5,dX(v, s1) + dX(v, s2) � w(P) for anyv ∈ V (X).
Then, by Lemma 4.4, the spanning treeT constructed at Step 4 is a( k+2

k+1)-
approximation of the 2-MRCT. The number of all possiblek-tuples isO(nk) for
constantk. Similar to the proof of Lemma 4.1 and by Lemma 4.5, each iteration
takesO(kn2) time. The time complexity of the algorithm is thereforeO(nk+2).
That is, the ratio isk+2

k+1 = 1 + ε, and the time complexity isO(n�1/ε+1�), which
is polynomial for constantε. ✷
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5. The weighted 2-MRCT problem

In this section, we consider the weighted 2-MRCT. That is, we want to
minimize

∑
v∈V (λ1dT (s1, v) + λ2dT (s2, v)), in which λ1 and λ2 are given

positive real number. Without loss of generality, we define the objective function
asc(T , s1, s2, λ)= ∑

v∈V (λdT (s1, v)+ dT (s2, v)), in whichλ� 1. First we shall
consider the case that the input is a general graph, and give a 2-approximation
algorithm. Then we show that the problem admits a PTAS if the input is restricted
to metric graphs.

5.1. On general graphs

First we present the 2-approximation algorithm for general graphs. Basically
each vertex is greedily connected to one of the two sources, and then the two
sources are connected by a shortest path.

Algorithm 3.

Input: A graphG= (V ,E,w), s1, s2 ∈ V , and a numberλ� 1.
Output: A spanning treeT of G.
1. For eachv ∈ V ,

computeD1(v)= (λ+ 1)dG(v, s1)+ dG(s1, s2);
computeD2(v)= (λ+ 1)dG(v, s2)+ λdG(s1, s2).

2. LetZ1 = {v|D1(v)�D2(v)} andZ2 = V \Z1;
3. For eachZi , with si as the root, find a shortest-path treeTi

spanning all vertices ofZi .
4. Find a shortest pathQ= SPG(s1, s2).

LetQ= (q0 = s1, q1, q2, . . . , qj , qj+1, . . . s2) in whichqj+1 is the first
vertex not inZ1.

5. T = T1 ∪ T2 ∪ (qj , qj+1).

Before showing the performance of the algorithm, we show the correctness of
Step 3.

Lemma 5.1. At Step3, Ti exists and is a shortest path tree.

Proof. It is sufficient to show that, for each vertexv ∈ Zi andQ = SPG(v, si ),
V (Q)⊂Zi . We show the casei = 1. The other case can be shown similarly. Since
v ∈ Z1,

(λ+ 1)dG(v, s1)+ dG(s1, s2)� (λ+ 1)dG(v, s2)+ λdG(s1, s2)
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For anyu ∈ V (Q), dG(v, s1)= dG(v,u)+ dG(u, s1) anddG(v, s2)� dG(v,u)+
dG(u, s2). Therefore,(λ + 1)(dG(v,u) + dG(u, s1)) + dG(s1, s2) � (λ + 1)×
(dG(v,u)+ dG(u, s2))+ λdG(s1, s2). Then

(λ+ 1)dG(u, s1)+ dG(s1, s2)� (λ+ 1)dG(u, s2)+ λdG(s1, s2).

It implies thatu ∈Z1. ✷
Lemma 5.2. Let T be the tree constructed at Step5. The path betweens1 ands2
onT is a shortest path. That is,dT (s1, s2)= dG(s1, s2).

Proof. SinceT1 is shortest path tree andqj is a vertex onT1, dT (s1, qj ) =
dG(s1, qj ). Similarly dT (s2, qj+1) = dG(s2, qj+1). Therefore dT (s1, s2) =
dT (s1, qj )+w(qj , qj+1)+ dT (qj+1, s2)=w(Q) = dG(s1, s2). ✷

The approximation ratio and the time complexity are shown in the following
theorem.

Theorem 5.1. For a graph G, Algorithm A3 finds a 2-approximation of the
weighted2-MRCT with time complexityfSP(G).

Proof. Similar as the proof of Lemma 4.1, the time complexity is dominated by
the shortest path tree and therefore isfSP(G). We shall show that the algorithm
finds a 2-approximation of the optimal. LetY be the optimal tree andP be
the path froms1 to s2 on Y . Let f1(v) = dY (v, s1) − dY (v,P ) and f2(v) =
dY (v, s2)− dY (v,P ) for each vertexv. By the definition of routing cost, we have

c(Y, s1, s2, λ)=
∑
v∈V

(
(λ+ 1)dY (v,P )+ λf1(v)+ f2(v)

)
. (10)

By Lemmas 5.1 and 5.2, each vertex is connected to eithers1 or s2 by a shortest
path, anddT (s1, s2) = dG(s1, s2). Consider the cost in the case that vertexv

is connected tos1 by a shortest path. SincedG(v, s1) � dY (v,P ) + f1(v) and
dG(s1, s2)�w(P) = f1(v)+ f2(v), we have

(λ+ 1)dG(v, s1)+ dG(s1, s2)

� (λ+ 1)dY (v,P )+ (λ+ 2)f1(v)+ f2(v)

= λdY (v, s1)+ dY (v, s2)+ 2f1(v). (11)

That is, the cost is increased by at most 2f1(v). Similarly, in the case thatv is
connected tos2 by a shortest path, we have

(λ+ 1)dG(v, s2)+ λdG(s1, s2)

� (λ+ 1)dY (v,P )+ λf1(v)+ (2λ+ 1)f2(v)

= λdY (v, s1)+ dY (v, s2)+ 2λf2(v). (12)
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The cost is increased by at most 2λf2(v). Since the costλdT (v, s1)+ dT (v, s2) is
the minimum of the costs in the two cases,(

λdT (v, s1)+ dT (v, s2)
) − (

λdY (v, s1)+ dY (v, s2)
)

� min
{
2f1(v),2λf2(v)

}
. (13)

By taking a weighted mean of the two numbers in Eq. (13), we have

min
{
2f1(v),2λf2(v)

}
� λ2

λ2 + 1

(
2f1(v)

) + 1

λ2 + 1

(
2λf2(v)

)

= 2λ

λ2 + 1

(
λf1(v)+ f2(v)

)
� λf1(v)+ f2(v). (14)

The last step is obtained by 2λ� λ2 + 1 sinceλ2 + 1− 2λ= (λ− 1)2 � 0.
By Eqs. (13), (14), and summing over all vertices,

c(T , s1, s2, λ)− c(Y, s1, s2, λ)�
∑
v∈V

(
λf1(v)+ f2(v)

)
.

Comparing with Eq. (10), we havec(T , s1, s2, λ)� 2c(Y, s1, s2, λ), and therefore
the approximation ratio is 2.✷
5.2. On metric graphs

A metric graph is a complete graph and the edge weights satisfy the triangle
inequality. In this subsection, we present a PTAS for the weighted 2-MRCT on
metric graphs.

The main idea of the PTAS for the weighted case is similar to the unweighted
one. We also try to guessk vertices of the path between the two sources on the
optimal tree. But the algorithm is more simple since the input is a metric graph,
which means that the edge between any pair of vertices is a shortest path. The
algorithm is listed below.

Algorithm 4.

Input: A metric graphG= (V ,E,w), s1, s2 ∈ V , a numberλ� 1, and
an integerk � 0.
Output: A spanning treeT of G.
For eachk-tuple(m1,m2, . . . ,mk) of not necessarily distinct vertices, use
the following steps to find a spanning treeT , and output the tree of
minimal costc(T , s1, s2, λ).
1. Letm0 = s1 andmk+1 = s2.
2. Construct pathQ= (m0,m1, . . . ,mk+1) and setT =Q.
3. For each vertexv,
4. findmi such that(λ+ 1)w(v,mi)+ λdQ(mi, s1)+ dQ(mi, s2) is
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minimum, choosing the smaller index to break the tie;
5. insert edge(mi, v) into T .

In the remaining paragraphs, we shall use the following notations. LetY be the
optimal tree andP be the path froms1 to s2 onY . As defined in Section 4, letM =
{m0 = s1,m1,m2, . . .mk,mk+1 = s2} be a set of not necessarily distinct vertices
of V (P), which partitionsV into U,U0,U1, . . . ,Uk such that|Ui | � n/(k + 1).
The definitions ofPi,Vi are also the same as in the previous section. Since the
algorithm tries all possiblek-tuples and output the best of found trees, we may
assume thatT is the tree constructed by choosing the correctM.

Lemma 5.3.
∑

v∈U(λdT (v, s1)+ dT (v, s2))�
∑

v∈U(λdY (v, s1)+ dY (v, s2)).

Proof. By definition,U is the set of the vertices which is connected toP at
a vertex inM. Sincew(mi,mi+1) � w(Pi) for eachi, dT (mi, s1) � dY (mi, s1)

anddT (mi, s2)� dY (mi, s2). For anyv ∈ Vi ⊆U , sincepi ∈M,

λdT (v, s1)+ dT (v, s2)

= min
j

{
(λ+ 1)w(v,mj )+ λdT (mj , s1)+ dT (mj , s2)

}

� min
j

{
(λ+ 1)dY (v,mj )+ λdY (mj , s1)+ dY (mj , s2)

}
� (λ+ 1)dY (v,pi )+ λdY (pi, s1)+ dY (pi, s2)

= λdY (v, s1)+ dY (v, s2).

The result is obtained by summing the inequality over all vertices ofU . ✷
Lemma 5.4.

∑
v∈Ui

(λdT (v, s1)+ dT (v, s2))�
∑

v∈Ui
(λdY (v, s1)+ dY (v, s2))+

2n
k+1w(Pi).

Proof. As in the proof of Lemma 5.3,dT (mi, s1)� dY (mi, s1) anddT (mi, s2)�
dY (mi, s2) for any 0� i � k.

For anyv ∈ Ui , by definition, it is connected to some vertex ofPi on the
optimal treeY . If v is connected tomi on T , the distance fromv to s1 is no
more than that onY , and the distance fromv to s2 is increased by at most 2w(Pi)
because, by the triangle inequality,

dT (v, s2)− dY (v, s2) = w(v,mi)+w(Pi)− dY (v,mj+1)

� dY (v,mi)− dY (v,mi+1)+w(Pi)� 2w(Pi).

That is,

(λ+ 1)w(v,mi)+ λdT (mi, s1)+ dT (mi, s2)

� λdY (v, s1)+ dY (v, s2)+ 2w(Pi).
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Sincev is connected to somemj to make the cost as small as possible, the cost
onT is no more than the one in the above case. Therefore

λdT (v, s1)+ dT (v, s2)� λdY (v, s1)+ dY (v, s2)+ 2w(Pi).

Summing over all vertices inUi , since|Ui | � n/(k + 1), we have
∑
v∈Ui

(
λdT (v, s1)+ dT (v, s2)

) −
∑
v∈Ui

(
λdY (v, s1)+ dY (v, s2)

)

�
∑
v∈Ui

2w(Pi)� 2n

k + 1
w(Pi). ✷ (15)

Theorem 5.2. The weighted2-MRCT problem on metric graphs admits a PTAS.
For anyε > 0, a (1+ ε)-approximation of the optimal can be found inO(n�2/ε�)
time.

Proof. By Lemmas 5.3 and 5.4 and thatc(Y, s1, s2, λ)� n×w(P), we have

c(T , s1, s2, λ)− c(Y, s1, s2, λ)

=
∑
v∈U

(
λdT (v, s1)+ dT (v, s2)− (

λdY (v, s1)+ dY (v, s2)
))

+
∑

0�i�k

∑
v∈Ui

(
λdT (v, s1)+ dT (v, s2)− (

λdY (v, s1)+ dY (v, s2)
))

�
∑

0�i�k

2n

k + 1
w(Pi)= 2n

k + 1
w(P) � 2

k + 1
c(Y, s1, s2, λ).

ThereforeT is a( k+3
k+1)-approximation of the weighted 2-MRCT. The number

of all possiblek-tuple isO(nk) for constantk. Apparently each iteration takes
O(kn) time. The time complexity of the algorithm isO(nk+1). For anyε > 0, we
choosek = �2

ε
− 1�. The approximation ratio is 1+ ε and the time complexity is

O(n�2/ε�). ✷

6. Concluding remarks

An interesting problem is the computational complexity of thek-source MRCT
for any fixedk. By the NP-hardness of 2-MRCT, we may easily show that the
k-MRCT problem is also NP-hard for any fixed even numberk = 2q . For an
instance of the 2-MRCT problem, we duplicateq copies of the two sources.
If there is a polynomial time algorithm for thek-MRCT, it can also solve the
2-MRCT problem in polynomial time. However, we did not find any obvious
reduction for fixed oddk.
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The main question left in the paper is how to improve the approximation ratio
for the weighted 2-MRCT of a general graph. By the previous result for the
SROCT problem, thek-MRCT admits a 2-approximation algorithm for arbitrary
k and for both weighted and unweighted cases. The 2-approximation algorithm in
Section 5 only improves the time complexity. Although there is a PTAS for metric
graphs, we did not find a similar result for general graphs.
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