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Abstract In this paper, an all-digital phase-locked loop 

(ADPLL) compiler with liberty timing files (.lib) is presented. 
The proposed digitally controlled oscillator (DCO) frequency 
range estimation algorithm can accurately compute the 
frequency range of the DCO with only liberty timing files. 
Therefore, the proposed ADPLL compiler can generate a wide 
frequency range and monotonic response DCO circuit according 
to the user input specifications. The generated DCO circuit is 
designed with standard cells. Thus, the design turnaround time 
for the ADPLL can be greatly reduced. The proposed ADPLL 
compiler is verified with SPICE circuit simulator. The maximum 
frequency estimation error is smaller than 5.92% in 90nm or 
65nm CMOS processes. 

I. INTRODUCTION 

Phase-locked loop (PLLs) and delay-locked loops (DLLs) are 
widely used in a system-on-a-chip (SoC). PLL with a loop filter have 
better reference jitter tolerance than the DLL-based frequency 
synthesizer, and thus, PLLs are usually used for on-chip high-speed 
clock generation applications. Traditionally, PLLs are usually 
designed by the analog charge-pump based architecture. However, 
analog PLLs need to be redesigned when the process technology is 
changed. Moreover, the leakage current of transistors in advanced 
CMOS process makes it difficult to design a voltage controlled loop 
at a low supply voltage. 

In contrast to analog PLLs, all-digital phase-locked loops 
(ADPLLs) [3] -[12] use the digital design approaches and does not 
use any passive component which allows it to be easily integrated 
with other digital circuits into the systems in advanced CMOS 
process. In a SoC, it often requires several PLLs for different I/O 
interface. In order to reduce the design time and design efforts when 
processes or specifications are changed, ADPLLs implemented with 
standard cells can have best portability and are more suitable for the 
SoC design than analog PLLs. 

Among the functional blocks of the ADPLL, DCO is the most 
critical component. Because the DCO usually occupies the most 
portions of the ADPLL’s area and consumes the relative large power 
consumption than the other blocks of the ADPLL. Furthermore, 
DCO dominates the major performance of the ADPLL, such as the 
output frequency range, and output jitter. According to different 
design requirements for realizing a DCO for various applications, 
such as spread-spectrum clock generator (SSCG), fast settling 
ADPLL, an automatic design flow for the ADPLL is demanded. 

A parameterized ADPLL compiler [6] is proposed to support easy 
process migration. In [6], the DCO is transformed into the equivalent 
model, and then the DCO timing analyzer will use the timing 
information provided by liberty timing files (.lib) to compute the 
frequency range of the DCO. After that, the ADPLL compiler [6] can 
generate a suitable DCO circuit to meet the frequency range 
requirements. However, due to the non-linearity of the proposed 
DCO architecture, there has a large frequency estimation error 

between the estimation results calculated by the ADPLL compiler [6] 
and the SPICE circuit simulation results. As a result, for different 
process, many SPICE circuit simulations should be performed for 
calibration before the ADPLL compiler [6] can be used. 

The non-linear delay model used in the liberty timing files (.lib) 
will use four neighboring points which simulated by SPICE circuit 
simulator to compute the delay time of the logic gate with the 
specified input transition time and the specified output loading. 
However, the DCO architecture [6] has a high input transition time 
and a large output loading during looking up the liberty timing files 
(.lib). As a result, there has a large frequency error in the DCO 
timing analyzer [6]. 

In this paper, the proposed ADPLL compiler uses a linear DCO 
architecture to avoid the problems mentioned above. Thus we can 
obtain more accurate timing information as compared to the SPICE 
circuit simulation results. The proposed ADPLL compiler also uses 
cell timing information provided by the liberty timing files (.lib) to 
calculate the period information of the DCO. As a result, the ADPLL 
compiler does not need to perform many SPICE circuit simulations 
before porting to a new CMOS process which makes the proposed 
ADPLL compiler more suitable for the design automation of the 
ADPLL. 

The rest of the paper is organized as follows: Section II describes 
the proposed DCO architecture and the frequency range estimation 
algorithm of the proposed ADPLL compiler. Experimental results 
and circuit implementation results are discussed in Section III. 
Finally, Section IV concludes with a summary. 

II. PROPOSED ADPLL COMPILER 

A. PROPOSED DCO ARCHITECTURE 

 

FIGURE 1. THE PROPOSED DCO ARCHITECTURE. 

Fig.1 shows the proposed DCO architecture. The DCO is 
composed of a coarse-tuning stage [1] and a fine-tuning stage [2],[3]. 
The coarse-tuning stage consists of n coarse-tuning delay cells 
(CDCs). Thus the coarse-tuning resolution of the proposed DCO is 
two NAND gate delay time. In addition, unused CDCs can be gated 
for reducing the power consumption of the DCO at high frequency 
operation. 

Fig. 2 shows the fine-tuning stage of the DCO. The fine-tuning 
stage [2],[3] is composed of two parallel connected tri-state buffer 
arrays operating as an interpolator circuit that are controlled by the 
fine-tuning control code (Fine[31:0]). The total delay controllable 

This work was supported in part by the National Science Council of Taiwan, 
under Grant NSC102-2221-E-194-063-MY3. 

978-1-4799-2776-0/14/$31.00 ©2014 IEEE



range of the fine-tuning stage is always equal to one coarse-tuning 
resolution. When more left-hand side tri-state buffers are turned on, 
the output clock is more close to the CA_OUT. Oppositely, when 
more right-hand side tri-state buffers are turned on, the output clock 
is more close to the CB_OUT. As a result, the proposed DCO will 
have a monotonic response in output clock period versus the DCO 
control code which can reduce the jitter of the output clock during 
coarse-tuning control code switching. 
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Fine[30]=0

OUT_CLK
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FIGURE 2. THE PROPOSED FINE-TUNING STAGE. 

In the proposed DCO, the coarse-tuning stage has a regular 
structure with a good linearity in output period versus the coarse-
tuning control code. Therefore, it can achieve a wide frequency range 
by increasing the number of the coarse-tuning delay cells. The 
proposed flexible DCO architecture is suitable for the ADPLL 
compiler to generate a DCO circuit with user input specifications. 

B. FREQUENCY RANGE ESTIMATION 

FIGURE 3. THE NON-LINEAR DELAY MODEL IN LIBERTY TIMING FILE. 

The proposed ADPLL compiler uses the cell timing information 
in the liberty timing files (.lib) to estimate the period of the DCO. To 
compute the period of the DCO, the rise delay and fall delay of each 
delay cell in the DCO are calculated and accumulated. Hence, we 
need to look up the liberty timing files (.lib) of the delay cells. 

In each cell timing model, there are four delays can be looked up 
from the liberty timing files (.lib). There are cell rise transition time, 
cell fall transition time, cell rise delay time, and cell fall delay time. 
To use the non-linear cell delay model, the specified input transition 
time and output loading are needed to compute these four delays of a 
delay cell. Thus for one delay cell, the rise transition time and fall 
transition time of the previous delay cell, and the total loading 
capacitance followed by the delay cell will be the input transition 
time and the output capacitance to lookup the cell timing model. 

                            (1) 

Fig. 3 illustrates how to use the non-linear delay model to 
compute the cell delay time. If the input transition time and the 
output capacitance are 1.4 ns and 2.94 pF, respectively, the cell delay 
can be directly looked up from the timing model and will be 
0.917375ns. However, if the input transition time and the output 
capacitance are 1.6 ns and 4.08 pF, respectively, the cell delay can 
only be computed by the neighboring four points which simulated by 
the SPICE circuit simulation in cell library characterization. Eq. 1 
can be used to compute the cell delay. In Eq. 1, Z is the cell delay 
time, x is the input transition time, and y is the output capacitance, 
and A, B, C, D are coefficients needed to be solved. The delay time 
values in the neighboring four points can be substituted into the Eq. 1 
to obtain the coefficients of A, B, C, and D. As a result, for the 
specified input transition time and output loading, the delay time of 
the delay cell can be computed from the cell timing model. Thus, the 
total delay of the coarse-tuning stage can be computed by the above 
mentioned approach. 

 

FIGURE 4. EQUIVALENT MODEL OF THE FINE-TUNING STAGE. 

In the fine-tuning stage of the proposed DCO, there are parallel 
connected tri-state buffers. In [4], [5], a delay model for parallel 
connected tri-state buffer arrays is proposed. The delay model [4], [5] 
shows that the delay time of the parallel connected tri-state buffer 
array is related by the number of conductive tri-state buffers. 
However, the linear model [4], [5] is not accurate in advanced 
CMOS process. A transformed equivalence model [6] is proposed for 
parallel connected tri-state buffer arrays. In [6], the parallel 
connected tri-state buffer arrays are transformed into an equivalent 
RC model to represent the changes of the driving strength and the 
capacitance loading. Then, the driving strength of the driving cell is 
normalized to R, and we can use the equivalent C value to look-up 
the timing information from the cell timing model. 

According to [6], Fig. 4 shows the equivalent model for 
computing the maximum delay of the fine-tuning stage. Fig. 4(a) 
shows the proposed fine-tuning stage is transformed into resistors 
and capacitors. Fig. 4(b) shows the combination values of 
transformed RC circuit. The final normalization result shown in Fig. 
4(c). As a result, we can use two times the output capacitance of one 
tri-state buffer to look up the cell delay of the fine-tuning delay stage. 

C. AUTOMATIC DCO GENERATION FLOW 
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FIGURE 5. FLOWCHART OF AUTOMATIC DCO GENERATION. 



Fig. 5 shows the flowchart of automatic DCO circuit generation. 
After the user inputs the specifications of the ADPLL, such as 
process, and the frequency range (i.e. maximum output frequency 
and minimum output frequency), the ADPLL uses the proposed 
frequency range estimation algorithm to compute the range of the 
DCO. In the beginning, the DCO is created by minimum driving 
strength CDCs with one coarse-tuning delay stage. Then, the 
maximum output frequency of the DCO can be computed by the 
proposed frequency range estimation algorithm from the cell timing 
library. If the current DCO configuration does not meet the 
maximum output frequency requirement, we will increase the driving 
strength of the CDCs until the maximum output frequency 
requirement is satisfied. Then, the number of the coarse-tuning stage 
is increased until the minimum output frequency requirement is met. 
Finally, the DCO gate-level netlist in hardware description language 
(HDL) format is output for ADPLL integration. 

The other modules of the ADPLL except for the phase and 
frequency detector (PFD) are designed with register transfer level 
(RTL) HDL codes. Thus the gate-level netlist of these modules can 
be generated after logic synthesis. By using the proposed ADPLL 
compiler, the design turnaround time of the ADPLL can be greatly 
reduced. 

III. EXPERIMENTAL RESULTS 

TABLE I. FREQUENCY RANGE ESTIMATION ERROR IN 90NM CMOS 

 90nm CMOS process 
Estimation HSPICE (MHz) Error (%)* 

CLKNAND2X2 

FF 176.80 ~ 3209.99 177.37 ~ 3041.17 0.32 ~ -5.26 
TT 117.07 ~ 2092.14 121.35 ~ 2049.34 3.7 ~ -2.05 
SS 70.94 ~ 1260.25 74.97 ~ 1257.91 5.54 ~ -0.19 

CLKNAND2X4 

FF 176.59 ~ 3315.35 171.92 ~ 3128.97 -2.64 ~ -5.62 
TT 117.25 ~ 2160.17 117.67 ~ 2104.46 0.36 ~ -2.58 
SS 71.49 ~ 1303.08 72.72 ~ 1290.20 1.72 ~ -0.99 

CLKNAND2X8 

FF 178.70 ~ 3355.70 173.27 ~ 3160.33 -3.04 ~ -5.82 
TT 118.79 ~ 2186.80 118.20 ~ 2117.80 -0.5 ~ -3.16 
SS 72.93 ~ 1322.58 73.13 ~ 1299.90 0.27 ~ -1.71 

CLKNAND2X12 

FF 176.42 ~ 3335.53 172.90 ~ 3145.40 -2 ~ -5.7 
TT 116.92 ~ 2170.96 118.05 ~ 2110.70 0.97 ~ -2.78 
SS 71.41 ~ 1310.73 72.97 ~ 1289.80 2.19 ~ -1.6 

* Error (%) = (FreqHSIPCE - FreqEstimation) / FreqHSPICE * 100% 

To verify the accuracy of the proposed frequency range 
estimation algorithm, the ADPLL compiler is verified with standard 
cells in 0.18μm, 90nm, and 65nm CMOS processes. Table I shows 
the estimation frequency range in 90nm CMOS process as compared 
with HSPICE simulation results under process, voltage, and 
temperature (PVT) variations. The DCO in the Table I has 63 coarse-
tuning stages. As shown in Table I, the maximum frequency error as 
compared to the HSPICE simulation results with different CDCs is 
5.82%. 

Table II shows the frequency range estimation error in 0.18μm, 
90nm, and 65nm CMOS processes. The maximum frequency 
estimation error in 90nm and 65nm CMOS process is 5.82% and 
5.92%, respectively. However, the maximum frequency estimation 
error in 0.18um is 13.95%. In 0.18μm CMOS process, the input 
capacitance of standard cells is much larger than in 90nm and 65nm 
CMOS process. Therefore, the spacing of the neighboring four points 
in the non-linear table is also larger than 90nm and 65nm CMOS 
process in typical liberty timing files (.lib). As a result, there has a 

larger error in the delay time calculation. Since the proposed ADPLL 
compiler depends on the accuracy of the liberty timing files (.lib), 
and thus, the accuracy of the frequency range estimation can be 
improved by re-characterize some delay cells of the 0.18μm cell-
library. 

TABLE II. ESTIMATION ERROR IN DIFFERENT PROCESSES 

 Frequency Range Error (%) 
65nm 90nm 0.18�m 

NAND2XL 
FF -1.8 ~ 5.8 0.32 ~ -5.26 2.53 ~ -1.41 
TT -1.68 ~ 5.92 3.7 ~ -2.05 7.07 ~ -7.86 
SS -1.36 ~ 5.52 5.54 ~ -0.19 8.91 ~ -6.07 

 NAND2X1 
FF -2.84 ~ 4.76 -2.64 ~ -5.62 -1.97 ~ -2.06 
TT -2.71 ~ 5.2 0.36 ~ -2.58 3.47 ~ -13.95 
SS -1.57 ~ 4.58 1.72 ~ -0.99 5.93 ~ -11.74 

NANDX2 
FF -3.34 ~ 4.8 -3.04 ~ -5.82 0.19 ~ -11.99 
TT -2.33 ~ 5 -0.5 ~ -3.16 6.31 ~ -4.69 
SS -2.13 ~ 4.75 0.27 ~ -1.71 8.61 ~ -2.88 

 

FIGURE 6. LAYOUT OF ADPLL TEST CHIP. 

To verify the proposed ADPLL compiler, the proposed ADPLL is 
implemented in a standard performance 90nm CMOS process with a 
1.0V power supply. The layout of the ADPLL test chip is shown in 
Fig. 6. The active area is 180�m×180�m, and the chip area including 
I/O pads is 760�m×760�m. The architecture of the ADPLL is similar 
to the ADPLL [3] without the fast lock-in feature. 

Table III shows the comparisons with prior researches. The 
proposed ADPLL is composed of a phase and frequency detector 
(PFD) [7], an ADPLL controller [8], a frequency divider, and a DCO 
which is automatic generated by the proposed ADPLL compiler with 
63 coarse-tuning stages. The proposed ADPLL has a fine DCO 
resolution and smallest chip area, and it also has a wide frequency 
range. 

IV. CONCLUSION 

In this paper, an all-digital phase-locked loop (ADPLL) compiler 
with liberty timing files (.lib) is presented. The proposed ADPLL 
compiler uses a flexible DCO architecture with the proposed 
frequency range estimation algorithm to automatically generate the 
DCO circuit which meets the user input specifications. In addition, 
the proposed ADPLL is designed in an all-digital approach with 



standard cells. Thus it can be easily ported to different process in a 
short time. Most of all, the proposed frequency range estimation 
algorithm can accurately estimate the frequency range of the DCO 
without performing SPICE circuit simulation.  
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TABLE III. PERFORMANCE COMPARISONS 

Parameter Proposed [8] JSSC’11 [9] TCAS-I’09 [10] TVLSI’11 [11] JSSC’03 [12] TCAS-I’12 

Category All-Digital PLL All-Digital PLL All-Digital PLL All-Digital PLL All-Digital PLL All-Digital PLL 

Process 90nm 65nm 0.18�m 0.18�m 0.65�m 90nm 

Supply Voltage 1.0V 1.0V 1.8V 1.8V 5V 1.0V/1.2V 

Input Frequency 
(MHz) 

50 0.036 ~12.5 N/A 0.0303~100 0.011 ~ 0.339 60 

Multiplication Factor 2 ~ 256 16 ~ 5600 16 1 ~ 2046 4 ~ 1022 64 

Time Resolution 4.1 ps 16.2 ps N/A 8.8 ps 170 ps 20 kHz/LSB 

Power 
Consumption 

7.74mW 
@2.17GHz 

1.81 mW 
@520MHz 

15.7 mW 
@1.04GHz 

26.7 mW 
@600MHz 

N/A 
8.48 mW@1.0V 
10.08 mW@1.2V 

Lock-in Time 38 cycles N/A N/A N/A 7 cycles < 45 cycles 

Output Frequency 
(MHz) 

123.28~ 
2168.25 

90 ~ 
527 

33 ~ 
1040 

62 ~ 
616 

0.045 ~ 
61.3 

4080 

Area (mm2) 0.0324 0.07 0.32 0.14 N/A 0.34 

 


