
An All-Digital Phase-Locked Loop Compiler with Liberty Timing Files

Ching-Che Chung1, Duo Sheng2, and Chen-Han Chen 1
1 Department of Computer Science and Information Engineering, National Chung Cheng University,

No. 168 University Rd., Min-Hsiung, Chia-Yi, Taiwan
2 Department of Electrical Engineering, Fu Jen Catholic University,

No. 510 Chung-Cheng Rd. Hsin-Chung, Taipei, Taiwan.
Email: wildwolf@cs.ccu.edu.tw

Abstract In this paper, an all-digital phase-locked loop

(ADPLL) compiler with liberty timing files (.lib) is presented.
The proposed digitally controlled oscillator (DCO) frequency
range estimation algorithm can accurately compute the
frequency range of the DCO with only liberty timing files.
Therefore, the proposed ADPLL compiler can generate a wide
frequency range and monotonic response DCO circuit according
to the user input specifications. The generated DCO circuit is
designed with standard cells. Thus, the design turnaround time
for the ADPLL can be greatly reduced. The proposed ADPLL
compiler is verified with SPICE circuit simulator. The maximum
frequency estimation error is smaller than 5.92% in 90nm or
65nm CMOS processes.

I. INTRODUCTION

Phase-locked loop (PLLs) and delay-locked loops (DLLs) are
widely used in a system-on-a-chip (SoC). PLL with a loop filter have
better reference jitter tolerance than the DLL-based frequency
synthesizer, and thus, PLLs are usually used for on-chip high-speed
clock generation applications. Traditionally, PLLs are usually
designed by the analog charge-pump based architecture. However,
analog PLLs need to be redesigned when the process technology is
changed. Moreover, the leakage current of transistors in advanced
CMOS process makes it difficult to design a voltage controlled loop
at a low supply voltage.

In contrast to analog PLLs, all-digital phase-locked loops
(ADPLLs) [3] -[12] use the digital design approaches and does not
use any passive component which allows it to be easily integrated
with other digital circuits into the systems in advanced CMOS
process. In a SoC, it often requires several PLLs for different I/O
interface. In order to reduce the design time and design efforts when
processes or specifications are changed, ADPLLs implemented with
standard cells can have best portability and are more suitable for the
SoC design than analog PLLs.

Among the functional blocks of the ADPLL, DCO is the most
critical component. Because the DCO usually occupies the most
portions of the ADPLL’s area and consumes the relative large power
consumption than the other blocks of the ADPLL. Furthermore,
DCO dominates the major performance of the ADPLL, such as the
output frequency range, and output jitter. According to different
design requirements for realizing a DCO for various applications,
such as spread-spectrum clock generator (SSCG), fast settling
ADPLL, an automatic design flow for the ADPLL is demanded.

A parameterized ADPLL compiler [6] is proposed to support easy
process migration. In [6], the DCO is transformed into the equivalent
model, and then the DCO timing analyzer will use the timing
information provided by liberty timing files (.lib) to compute the
frequency range of the DCO. After that, the ADPLL compiler [6] can
generate a suitable DCO circuit to meet the frequency range
requirements. However, due to the non-linearity of the proposed
DCO architecture, there has a large frequency estimation error

between the estimation results calculated by the ADPLL compiler [6]
and the SPICE circuit simulation results. As a result, for different
process, many SPICE circuit simulations should be performed for
calibration before the ADPLL compiler [6] can be used.

The non-linear delay model used in the liberty timing files (.lib)
will use four neighboring points which simulated by SPICE circuit
simulator to compute the delay time of the logic gate with the
specified input transition time and the specified output loading.
However, the DCO architecture [6] has a high input transition time
and a large output loading during looking up the liberty timing files
(.lib). As a result, there has a large frequency error in the DCO
timing analyzer [6].

In this paper, the proposed ADPLL compiler uses a linear DCO
architecture to avoid the problems mentioned above. Thus we can
obtain more accurate timing information as compared to the SPICE
circuit simulation results. The proposed ADPLL compiler also uses
cell timing information provided by the liberty timing files (.lib) to
calculate the period information of the DCO. As a result, the ADPLL
compiler does not need to perform many SPICE circuit simulations
before porting to a new CMOS process which makes the proposed
ADPLL compiler more suitable for the design automation of the
ADPLL.

The rest of the paper is organized as follows: Section II describes
the proposed DCO architecture and the frequency range estimation
algorithm of the proposed ADPLL compiler. Experimental results
and circuit implementation results are discussed in Section III.
Finally, Section IV concludes with a summary.

II. PROPOSED ADPLL COMPILER

A. PROPOSED DCO ARCHITECTURE

FIGURE 1. THE PROPOSED DCO ARCHITECTURE.

Fig.1 shows the proposed DCO architecture. The DCO is
composed of a coarse-tuning stage [1] and a fine-tuning stage [2],[3].
The coarse-tuning stage consists of n coarse-tuning delay cells
(CDCs). Thus the coarse-tuning resolution of the proposed DCO is
two NAND gate delay time. In addition, unused CDCs can be gated
for reducing the power consumption of the DCO at high frequency
operation.

Fig. 2 shows the fine-tuning stage of the DCO. The fine-tuning
stage [2],[3] is composed of two parallel connected tri-state buffer
arrays operating as an interpolator circuit that are controlled by the
fine-tuning control code (Fine[31:0]). The total delay controllable

This work was supported in part by the National Science Council of Taiwan,
under Grant NSC102-2221-E-194-063-MY3.

978-1-4799-2776-0/14/$31.00 ©2014 IEEE

range of the fine-tuning stage is always equal to one coarse-tuning
resolution. When more left-hand side tri-state buffers are turned on,
the output clock is more close to the CA_OUT. Oppositely, when
more right-hand side tri-state buffers are turned on, the output clock
is more close to the CB_OUT. As a result, the proposed DCO will
have a monotonic response in output clock period versus the DCO
control code which can reduce the jitter of the output clock during
coarse-tuning control code switching.

Fine[0]=1

Fine[1]=1

Fine[30]=0

OUT_CLK

CA_OUT CB_OUT

Fine[29]=0

Fine[0]=0

Fine[1]=0

Fine[29]=1

Fine[30]=1

FIGURE 2. THE PROPOSED FINE-TUNING STAGE.

In the proposed DCO, the coarse-tuning stage has a regular
structure with a good linearity in output period versus the coarse-
tuning control code. Therefore, it can achieve a wide frequency range
by increasing the number of the coarse-tuning delay cells. The
proposed flexible DCO architecture is suitable for the ADPLL
compiler to generate a DCO circuit with user input specifications.

B. FREQUENCY RANGE ESTIMATION

FIGURE 3. THE NON-LINEAR DELAY MODEL IN LIBERTY TIMING FILE.

The proposed ADPLL compiler uses the cell timing information
in the liberty timing files (.lib) to estimate the period of the DCO. To
compute the period of the DCO, the rise delay and fall delay of each
delay cell in the DCO are calculated and accumulated. Hence, we
need to look up the liberty timing files (.lib) of the delay cells.

In each cell timing model, there are four delays can be looked up
from the liberty timing files (.lib). There are cell rise transition time,
cell fall transition time, cell rise delay time, and cell fall delay time.
To use the non-linear cell delay model, the specified input transition
time and output loading are needed to compute these four delays of a
delay cell. Thus for one delay cell, the rise transition time and fall
transition time of the previous delay cell, and the total loading
capacitance followed by the delay cell will be the input transition
time and the output capacitance to lookup the cell timing model.

 (1)

Fig. 3 illustrates how to use the non-linear delay model to
compute the cell delay time. If the input transition time and the
output capacitance are 1.4 ns and 2.94 pF, respectively, the cell delay
can be directly looked up from the timing model and will be
0.917375ns. However, if the input transition time and the output
capacitance are 1.6 ns and 4.08 pF, respectively, the cell delay can
only be computed by the neighboring four points which simulated by
the SPICE circuit simulation in cell library characterization. Eq. 1
can be used to compute the cell delay. In Eq. 1, Z is the cell delay
time, x is the input transition time, and y is the output capacitance,
and A, B, C, D are coefficients needed to be solved. The delay time
values in the neighboring four points can be substituted into the Eq. 1
to obtain the coefficients of A, B, C, and D. As a result, for the
specified input transition time and output loading, the delay time of
the delay cell can be computed from the cell timing model. Thus, the
total delay of the coarse-tuning stage can be computed by the above
mentioned approach.

FIGURE 4. EQUIVALENT MODEL OF THE FINE-TUNING STAGE.

In the fine-tuning stage of the proposed DCO, there are parallel
connected tri-state buffers. In [4], [5], a delay model for parallel
connected tri-state buffer arrays is proposed. The delay model [4], [5]
shows that the delay time of the parallel connected tri-state buffer
array is related by the number of conductive tri-state buffers.
However, the linear model [4], [5] is not accurate in advanced
CMOS process. A transformed equivalence model [6] is proposed for
parallel connected tri-state buffer arrays. In [6], the parallel
connected tri-state buffer arrays are transformed into an equivalent
RC model to represent the changes of the driving strength and the
capacitance loading. Then, the driving strength of the driving cell is
normalized to R, and we can use the equivalent C value to look-up
the timing information from the cell timing model.

According to [6], Fig. 4 shows the equivalent model for
computing the maximum delay of the fine-tuning stage. Fig. 4(a)
shows the proposed fine-tuning stage is transformed into resistors
and capacitors. Fig. 4(b) shows the combination values of
transformed RC circuit. The final normalization result shown in Fig.
4(c). As a result, we can use two times the output capacitance of one
tri-state buffer to look up the cell delay of the fine-tuning delay stage.

C. AUTOMATIC DCO GENERATION FLOW

Start
Use minimum driving strength CDC to build

up the DCO shown in Fig. 1
(num_of_coarse-tuning_stage = 1)

Meet the maximum
frequency

requirement ?

Yes

Increase the number of coarse-tuning
stage

(num_of_coarse-tuning_stage + 1)

Meet the minimum
frequency requirement ? No

Yes

Finish

Output the DCO gate-level netlist
(DCO.v)

User Input:
(1) Process
(2) Max_Freq Min_Freq

Calculate the frequency of the
DCO

Increase driving
strength of CDC

No

FIGURE 5. FLOWCHART OF AUTOMATIC DCO GENERATION.

Fig. 5 shows the flowchart of automatic DCO circuit generation.
After the user inputs the specifications of the ADPLL, such as
process, and the frequency range (i.e. maximum output frequency
and minimum output frequency), the ADPLL uses the proposed
frequency range estimation algorithm to compute the range of the
DCO. In the beginning, the DCO is created by minimum driving
strength CDCs with one coarse-tuning delay stage. Then, the
maximum output frequency of the DCO can be computed by the
proposed frequency range estimation algorithm from the cell timing
library. If the current DCO configuration does not meet the
maximum output frequency requirement, we will increase the driving
strength of the CDCs until the maximum output frequency
requirement is satisfied. Then, the number of the coarse-tuning stage
is increased until the minimum output frequency requirement is met.
Finally, the DCO gate-level netlist in hardware description language
(HDL) format is output for ADPLL integration.

The other modules of the ADPLL except for the phase and
frequency detector (PFD) are designed with register transfer level
(RTL) HDL codes. Thus the gate-level netlist of these modules can
be generated after logic synthesis. By using the proposed ADPLL
compiler, the design turnaround time of the ADPLL can be greatly
reduced.

III. EXPERIMENTAL RESULTS

TABLE I. FREQUENCY RANGE ESTIMATION ERROR IN 90NM CMOS

 90nm CMOS process
Estimation HSPICE (MHz) Error (%)*

CLKNAND2X2

FF 176.80 ~ 3209.99 177.37 ~ 3041.17 0.32 ~ -5.26
TT 117.07 ~ 2092.14 121.35 ~ 2049.34 3.7 ~ -2.05
SS 70.94 ~ 1260.25 74.97 ~ 1257.91 5.54 ~ -0.19

CLKNAND2X4

FF 176.59 ~ 3315.35 171.92 ~ 3128.97 -2.64 ~ -5.62
TT 117.25 ~ 2160.17 117.67 ~ 2104.46 0.36 ~ -2.58
SS 71.49 ~ 1303.08 72.72 ~ 1290.20 1.72 ~ -0.99

CLKNAND2X8

FF 178.70 ~ 3355.70 173.27 ~ 3160.33 -3.04 ~ -5.82
TT 118.79 ~ 2186.80 118.20 ~ 2117.80 -0.5 ~ -3.16
SS 72.93 ~ 1322.58 73.13 ~ 1299.90 0.27 ~ -1.71

CLKNAND2X12

FF 176.42 ~ 3335.53 172.90 ~ 3145.40 -2 ~ -5.7
TT 116.92 ~ 2170.96 118.05 ~ 2110.70 0.97 ~ -2.78
SS 71.41 ~ 1310.73 72.97 ~ 1289.80 2.19 ~ -1.6

* Error (%) = (FreqHSIPCE - FreqEstimation) / FreqHSPICE * 100%

To verify the accuracy of the proposed frequency range
estimation algorithm, the ADPLL compiler is verified with standard
cells in 0.18μm, 90nm, and 65nm CMOS processes. Table I shows
the estimation frequency range in 90nm CMOS process as compared
with HSPICE simulation results under process, voltage, and
temperature (PVT) variations. The DCO in the Table I has 63 coarse-
tuning stages. As shown in Table I, the maximum frequency error as
compared to the HSPICE simulation results with different CDCs is
5.82%.

Table II shows the frequency range estimation error in 0.18μm,
90nm, and 65nm CMOS processes. The maximum frequency
estimation error in 90nm and 65nm CMOS process is 5.82% and
5.92%, respectively. However, the maximum frequency estimation
error in 0.18um is 13.95%. In 0.18μm CMOS process, the input
capacitance of standard cells is much larger than in 90nm and 65nm
CMOS process. Therefore, the spacing of the neighboring four points
in the non-linear table is also larger than 90nm and 65nm CMOS
process in typical liberty timing files (.lib). As a result, there has a

larger error in the delay time calculation. Since the proposed ADPLL
compiler depends on the accuracy of the liberty timing files (.lib),
and thus, the accuracy of the frequency range estimation can be
improved by re-characterize some delay cells of the 0.18μm cell-
library.

TABLE II. ESTIMATION ERROR IN DIFFERENT PROCESSES

 Frequency Range Error (%)
65nm 90nm 0.18�m

NAND2XL
FF -1.8 ~ 5.8 0.32 ~ -5.26 2.53 ~ -1.41
TT -1.68 ~ 5.92 3.7 ~ -2.05 7.07 ~ -7.86
SS -1.36 ~ 5.52 5.54 ~ -0.19 8.91 ~ -6.07

 NAND2X1
FF -2.84 ~ 4.76 -2.64 ~ -5.62 -1.97 ~ -2.06
TT -2.71 ~ 5.2 0.36 ~ -2.58 3.47 ~ -13.95
SS -1.57 ~ 4.58 1.72 ~ -0.99 5.93 ~ -11.74

NANDX2
FF -3.34 ~ 4.8 -3.04 ~ -5.82 0.19 ~ -11.99
TT -2.33 ~ 5 -0.5 ~ -3.16 6.31 ~ -4.69
SS -2.13 ~ 4.75 0.27 ~ -1.71 8.61 ~ -2.88

FIGURE 6. LAYOUT OF ADPLL TEST CHIP.

To verify the proposed ADPLL compiler, the proposed ADPLL is
implemented in a standard performance 90nm CMOS process with a
1.0V power supply. The layout of the ADPLL test chip is shown in
Fig. 6. The active area is 180�m×180�m, and the chip area including
I/O pads is 760�m×760�m. The architecture of the ADPLL is similar
to the ADPLL [3] without the fast lock-in feature.

Table III shows the comparisons with prior researches. The
proposed ADPLL is composed of a phase and frequency detector
(PFD) [7], an ADPLL controller [8], a frequency divider, and a DCO
which is automatic generated by the proposed ADPLL compiler with
63 coarse-tuning stages. The proposed ADPLL has a fine DCO
resolution and smallest chip area, and it also has a wide frequency
range.

IV. CONCLUSION

In this paper, an all-digital phase-locked loop (ADPLL) compiler
with liberty timing files (.lib) is presented. The proposed ADPLL
compiler uses a flexible DCO architecture with the proposed
frequency range estimation algorithm to automatically generate the
DCO circuit which meets the user input specifications. In addition,
the proposed ADPLL is designed in an all-digital approach with

standard cells. Thus it can be easily ported to different process in a
short time. Most of all, the proposed frequency range estimation
algorithm can accurately estimate the frequency range of the DCO
without performing SPICE circuit simulation.

ACKNOWLEDGMENT

The authors would like to thank their colleagues in the Silicon
Sensor and System (S3) Laboratory of National Chung Cheng
University for many fruitful discussions. The EDA tools supported
by National Chip Implementation Center (CIC) are acknowledged as
well.

REFERENCES

[1] Rong-Jyi Yang and Shen-Iuan Liu, “A 40-550 MHz harmonic-
free all-digital delay-locked loop using a variable SAR
algorithm, “ IEEE Journal of Solid-State Circuits, vol. 42, no.
2, pp. 361-373, Feb. 2007.

[2] Duo Sheng, Ching-Che Chung, and Jhih-Ci Lan, “A
monotonic and low-power digitally controlled oscillator using
standard cells for SoC applications,” in Proceedings of
International Asia Symposium on Quality Electronic Design
(ASQED), Jul. 2012, pp. 123-127.

[3] Ching-Che Chung, Duo Sheng, and Wei-Siang Su, “A
0.5V/1.0V fast lock-in ADPLL for DVFS battery-powered
devices, “ in Proceedings of International Symposium on VLSI
Design, Automation, and Test (VLSI-DAT), Apr. 2013.

[4] Terng-Yin Hsu, Bai-Jue Shieh, and Chen-Yi Lee, “An all-
digital phase-locked loop (ADPLL)-based clock recovery
circuit, “ IEEE Journal of Solid-State Circuits, vol. 34, no. 8,
pp. 1063-1073, Aug. 1999.

[5] Terng-Yin Hsu, Chung-Cheng Wang, and Chen-Yi Lee,
“Design and analysis of a portable high-speed clock generator,
“ IEEE Transactions on Circuits and Systems-II: Analog and

Digital Signal Processing, vol. 48, no. 4, pp. 367-375, Apr.
2001.

[6] Chao-Wen Tzeng, Shi-Yu Huang, and Pei-Ying Chao,
“Parameterized all-digital PLL architecture and its compiler to
support easy process migration, “ in press, IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, Sep. 2013.

[7] Ching-Che Chung and Chen-Yi Lee, “An all-digital phase-
locked loop for high-speed clock generation, “ IEEE Journal
of Solid-State Circuits, vol. 38, no. 2, pp. 347-351, Feb. 2003.

[8] Ching-Che Chung and Chiun-Yao Ko, “A fast phase tracking
ADPLL for video pixel clock generation in 65nm CMOS
technology, “ IEEE Journal of Solid-State Circuits, vol. 46, no.
10, pp. 2300-2311, Oct. 2011.

[9] Kwang-Hee Choi, Jung-Bum Shin, Jae-Yoon Sim, and Hong-
June Park, “An interpolating digitally controlled oscillator for
a wide-range all-digital PLL,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 56, no. 9, pp. 2055-2063,
Sep. 2009.

[10] Hsuan-Jung Hsu and Shi-Yu Huang, “A low-jitter ADPLL via
a suppressive digital filter and an interpolation-based locking
scheme,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 19, no. 1, pp. 165-170, Jan. 2011.

[11] Takamoto Watanabe and Shigenori Yamauchi, “An all-digital
PLL for frequency multiplication by 4 to 1022 with seven-
cycle lock time, ” IEEE Journal of Solid-State Circuits, vol.
38, no. 2, pp. 198-204, Feb. 2003

[12] Ja-Yol Lee, Mi-Jeong Park, Byung-Hun Min, Seongdo Kim,
Mun-Yang Park, and Hyun-Kyu Yu, “A 4-GHz all digital PLL
with low-power TDC and phase-error compensation,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol.
59, no. 8, pp. 1706-1719, Aug. 2012.

TABLE III. PERFORMANCE COMPARISONS

Parameter Proposed [8] JSSC’11 [9] TCAS-I’09 [10] TVLSI’11 [11] JSSC’03 [12] TCAS-I’12

Category All-Digital PLL All-Digital PLL All-Digital PLL All-Digital PLL All-Digital PLL All-Digital PLL

Process 90nm 65nm 0.18�m 0.18�m 0.65�m 90nm

Supply Voltage 1.0V 1.0V 1.8V 1.8V 5V 1.0V/1.2V

Input Frequency
(MHz)

50 0.036 ~12.5 N/A 0.0303~100 0.011 ~ 0.339 60

Multiplication Factor 2 ~ 256 16 ~ 5600 16 1 ~ 2046 4 ~ 1022 64

Time Resolution 4.1 ps 16.2 ps N/A 8.8 ps 170 ps 20 kHz/LSB

Power
Consumption

7.74mW
@2.17GHz

1.81 mW
@520MHz

15.7 mW
@1.04GHz

26.7 mW
@600MHz

N/A
8.48 mW@1.0V
10.08 mW@1.2V

Lock-in Time 38 cycles N/A N/A N/A 7 cycles < 45 cycles

Output Frequency
(MHz)

123.28~
2168.25

90 ~
527

33 ~
1040

62 ~
616

0.045 ~
61.3

4080

Area (mm2) 0.0324 0.07 0.32 0.14 N/A 0.34

